3 resultados para Nonlinear load


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)proportional to(T-f-t)(-xi) where T-f is the lifetime of the bundle and xi approximate to 1.0 is a universal scaling exponent. The average lifetime of the bundle [T-f] scales with the system size as N-delta, where delta depends on the distribution of individual fiber as well as the breakdown rule. [S1063-651X(99)13902-3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the theory and implementation of a composite damage model, addressing damage within a ply (intralaminar) and delamination (interlaminar), for the simulation of crushing of laminated composite structures. It includes a more accurate determination of the characteristic length to achieve mesh objectivity in capturing intralaminar damage consisting of matrix cracking and fibre failure, a load-history dependent material response, an isotropic hardening nonlinear matrix response, as well as a more physically-based interactive matrix-dominated damage mechanism. The developed damage model requires a set of material parameters obtained from a combination of standard and non-standard material characterisation tests. The fidelity of the model mitigates the need to manipulate, or "calibrate", the input data to achieve good agreement with experimental results. The intralaminar damage model was implemented as a VUMAT subroutine, and used in conjunction with an existing interlaminar damage model, in Abaqus/Explicit. This approach was validated through the simulation of the crushing of a cross-ply composite tube with a tulip-shaped trigger, loaded in uniaxial compression. Despite the complexity of the chosen geometry, excellent correlation was achieved with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate determination of non-linear shear behaviour and fracture toughness of continuous carbon-fibre/polymer composites remains a considerable challenge. These measurements are often necessary to generate material parameters for advanced computational damage models. In particular, there is a dearth of detailed shear fracture toughness characterisation for thermoplastic composites which are increasingly generating renewed interest within the aerospace and automotive sectors. In this work, carbon fibre (AS4)/ thermoplastic Polyetherketoneketone (PEKK) composite V-notched cross-ply specimens were manufactured to investigate their non-linear response under pure shear loading. Both monotonic and cyclic loading were applied to study the shear modulus degradation and progressive failure. For the first time in the reported literature, we use the essential work of fracture approach to measure the shear fracture toughness of continuous fibre reinforced composite laminates. Excellent geometric similarity in the load-displacement curves was observed for ligament-scaled specimens. The laminate fracture toughness was determined by linear regression, of the specific work of fracture values, to zero ligament thickness, and verified with computational models. The matrix intralaminar fracture toughness (ply level fracture toughness), associated with shear loading was determined by the area method. This paper also details the numerical implementation of a new three-dimensional phenomenological model for carbon fibre thermoplastic composites using the measured values, which is able to accurately represent the full non-linear mechanical response and fracture process. The constitutive model includes a new non-linear shear profile, shear modulus degradation and load reversal. It is combined with a smeared crack model for representing ply-level damage initiation and propagation. The model is shown to accurately predict the constitutive response in terms of permanent plastic strain, degraded modulus as well as load reversal. Predictions are also shown to compare favourably with the evolution of damage leading to final fracture.