5 resultados para Nonlinear Wave Equation
Resumo:
The nonlinear dynamics of modulated electrostatic wavepackets propagating in negativeion plasmas is investigated from first principles. A nonlinear Schrödinger equation is derived by adopting a multiscale technique. The stability of breather- like (bright envelope soliton) structures, considered as a precursor to freak wave (rogue wave) formation, is investigated and then tested via numerical simulations.
Resumo:
The generalized KP (GKP) equations with an arbitrary nonlinear term model and characterize many nonlinear physical phenomena. The symmetries of GKP equation with an arbitrary nonlinear term are obtained. The condition that must satisfy for existence the symmetries group of GKP is derived and also the obtained symmetries are classified according to different forms of the nonlinear term. The resulting similarity reductions are studied by performing the bifurcation and the phase portrait of GKP and also the corresponding solitary wave solutions of GKP
equation are constructed.
Resumo:
The nonlinear properties of small amplitude electron-acoustic solitary waves (EAWs) in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. At the critical ion density, the KP equation is not appropriate for describing the system. Hence, a new set of stretched coordinates
is considered to derive the modified KP equation. Moreover, the solitary solution, soliton energy and the associated electric field at the critical ion density were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments, such as Earth’s magnetotail region.
Resumo:
Abandonment of farming systems on upland areas in southwest Britain during the Late Bronze Age – some 3000 years ago – is widely considered a ‘classic’ demonstration of the impact of deteriorating climate on the vulnerability of populations in such marginal environments. Here we test the hypothesis that climate change drove the abandonment of upland areas by developing new chronologies for human activity on upland areas during the Bronze Age across southwest Britain (Dartmoor, Exmoor and Bodmin Moor). We find Bronze Age activity in these areas spanned 3900–2950 calendar years ago with abandonment by 2900 calendar years ago. Holocene Irish bog and lake oak tree populations provide evidence of major shifts in hydroclimate across western Britain and Ireland, coincident with ice rafted debris layers recognized in North Atlantic marine sediments, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. We observe abandonment of upland areas in southwest Britain coinciding with a sustained period of extreme wet conditions that commenced 3100 calendar years ago. Our results are consistent with the view that climate change increased the vulnerability of these early farming communities and led to a less intensive use of such marginal environments across Britain.
Resumo:
A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.