13 resultados para Nonhuman
Resumo:
Background There is considerable interest in developing coitally indepen- dent, sustained release formulations for long-term administration of HIV microbicides. Vaginal ring devices are at the forefront of this formulation strategy. Methods Non-medicated silicone elastomer vaginal rings were prepared having a range of appropriate dimensions for testing vaginal ?t in pig- tailed and Chinese rhesus macaques. Cervicovaginal proin?ammatory markers were evaluated. Compression testing was performed to compare the relative ?exibility of various macaque and commercial human rings. Results All rings remained in place during the study period and no tissue irritation or signi?cant induction of cervicovaginal proin?ammatory mark- ers or signs of physical discomfort were observed during the 8-week study period. Conclusions Qualitative evaluation suggests that the 25 · 5-mm ring pro- vided optimal ?t in both macaque species. Based on the results presented here, low-consistency silicone elastomers do not cause irritation in maca-
Resumo:
BACKGROUND: HIV microbicide trials have emphasized the need to evaluate the safety of topical microbicides and delivery platforms in an animal model prior to conducting clinical efficacy trials. An ideal delivery device should provide sustainable and sufficient concentrations of effective products to prevent HIV transmission while not increasing transmission risk by either local mucosal inflammation and/or disruption of the normal vaginal microflora.
METHODS: Safety analyses of macaque-sized elastomeric silicone and polyurethane intravaginal rings (IVRs) loaded with candidate antiretroviral (ARV) drugs were tested in four studies ranging in duration from 49 to 73 days with retention of the IVR being 28 days in each study. Macaques were assigned to 3 groups; blank IVR, ARV-loaded IVR, and naïve. In sequential studies, the same macaques were used but rotated into different groups. Mucosal and systemic levels of cytokines were measured from vaginal fluids and plasma, respectively, using multiplex technology. Changes in vaginal microflora were also monitored. Statistical analysis (Mann-Whitney test) was used to compare data between two groups of unpaired samples (with and without IVR, and IVR with and without ARV) for the groups collectively, and also for individual macaques.
RESULTS: There were few statistically significant differences in mucosal and systemic cytokine levels measured longitudinally when the ring was present or absent, with or without ARVs. Of the 8 proinflammatory cytokines assayed a significant increase (p = 0.015) was only observed for IL8 in plasma with the blank and ARV loaded IVR (median of 9.2 vs. 5.7 pg/ml in the absence of IVR). There were no significant differences in the prevalence of H2O2-producing lactobacilli or viridans streptococci, or other microorganisms indicative of healthy vaginal microflora. However, there was an increase in the number of anaerobic gram negative rods in the presence of the IVR (p= < 0.0001).
CONCLUSIONS: IVRs with or without ARVs neither significantly induce the majority of potentially harmful proinflammatory cytokines locally or systemically, nor alter the lactobacillus or G. vaginalis levels. The increase in anaerobic gram negative rods alone suggests minimal disruption of normal vaginal microflora. The use of IVRs as a long-term sustained delivery device for ARVs is promising and preclinical studies to demonstrate the prevention of transmission in the HIV/SHIV nonhuman primate model should continue.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
Ecologism or green political theory is the most recent of schools of political thinking. On the one hand, it focuses on issues that are extremely old in politics and philosophical inquiry – such as the relationship between the human and nonhuman worlds, the moral status of animals, what is the ‘good life’, and the ethical and political regulation of technological innovation. Yet on the other, it is also characterised as dealing with some specifically contemporary issues such as the economic and political implications of climate change, peak oil, overconsumption, resource competition and conflicts, and rising levels of global and national inequalities. It is also an extremely broad school of political thought covering a wide variety of concerns, contains a number of distinct sub-schools of green thought (here sharing a similarity with other political ideologies) and combines normative and empirical scientific elements in a unique manner making it distinctive from other political ideologies.
Resumo:
Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. © 2014 Galvão et al.