22 resultados para Non-rigid registration
Resumo:
Objective: Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans.
Methods: 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTVCT) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice’s similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan.
Results: When the GTVCT delineated on the staging scan after both rigid registration and deformation was compared with the GTVCT on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p50.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration.
Conclusions: No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
Resumo:
This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.
Resumo:
In this paper we present a new method for simultaneously determining three dimensional (3-D) shape and motion of a non-rigid object from uncalibrated two dimensional (2- D) images without assuming the distribution characteristics. A non-rigid motion can be treated as a combination of a rigid rotation and a non-rigid deformation. To seek accurate recovery of deformable structures, we estimate the probability distribution function of the corresponding features through random sampling, incorporating an established probabilistic model. The fitting between the observation and the projection of the estimated 3-D structure will be evaluated using a Markov chain Monte Carlo based expectation maximisation algorithm. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results.
Resumo:
With a significant increment of the number of digital cameras used for various purposes, there is a demanding call for advanced video analysis techniques that can be used to systematically interpret and understand the semantics of video contents, which have been recorded in security surveillance, intelligent transportation, health care, video retrieving and summarization. Understanding and interpreting human behaviours based on video analysis have observed competitive challenges due to non-rigid human motion, self and mutual occlusions, and changes of lighting conditions. To solve these problems, advanced image and signal processing technologies such as neural network, fuzzy logic, probabilistic estimation theory and statistical learning have been overwhelmingly investigated.
Resumo:
The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Abstract
Background: Automated closed loop systems may improve adaptation of the mechanical support to a patient's ventilatory needs and
facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of
ventilation.
Objectives: To compare the duration of weaning from mechanical ventilation for critically ill ventilated adults and children when managed
with automated closed loop systems versus non-automated strategies. Secondary objectives were to determine differences
in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.
Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2); MEDLINE (OvidSP) (1948 to August 2011); EMBASE (OvidSP) (1980 to August 2011); CINAHL (EBSCOhost) (1982 to August 2011); and the Latin American and Caribbean Health Sciences Literature (LILACS). In addition we received and reviewed auto-alerts for our search strategy in MEDLINE, EMBASE, and CINAHL up to August 2012. Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles.
Selection criteria: We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning
strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an intensive care unit (ICU).
Data collection and analysis: Two authors independently extracted study data and assessed risk of bias. We combined data into forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria.
Main results: Pooled data from 15 eligible trials (14 adult, one paediatric) totalling 1173 participants (1143 adults, 30 children) indicated that automated closed loop systems reduced the geometric mean duration of weaning by 32% (95% CI 19% to 46%, P =0.002), however heterogeneity was substantial (I2 = 89%, P < 0.00001). Reduced weaning duration was found with mixed or
medical ICU populations (43%, 95% CI 8% to 65%, P = 0.02) and Smartcare/PS™ (31%, 95% CI 7% to 49%, P = 0.02) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (17%, 95% CI 8% to 26%) and ICU length of stay (LOS) (11%, 95% CI 0% to 21%). There was no difference in mortality rates or hospital LOS. Overall the quality of evidence was high with the majority of trials rated as low risk.
Authors' conclusions: Automated closed loop systems may result in reduced duration of weaning, ventilation, and ICU stay. Reductions are more
likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized
controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Resumo:
AIMS/HYPOTHESIS:
The aim of the study was to describe 20-year incidence trends for childhood type 1 diabetes in 23 EURODIAB centres and compare rates of increase in the first (1989-1998) and second (1999-2008) halves of the period.
METHODS:
All registers operate in geographically defined regions and are based on a clinical diagnosis. Completeness of registration is assessed by capture-recapture methodology. Twenty-three centres in 19 countries registered 49,969 new cases of type 1 diabetes in individuals diagnosed before their 15th birthday during the period studied.
RESULTS:
Ascertainment exceeded 90% in most registers. During the 20-year period, all but one register showed statistically significant changes in incidence, with rates universally increasing. When estimated separately for the first and second halves of the period, the median rates of increase were similar: 3.4% per annum and 3.3% per annum, respectively. However, rates of increase differed significantly between the first half and the second half for nine of the 21 registers with adequate coverage of both periods; five registers showed significantly higher rates of increase in the first half, and four significantly higher rates in the second half.
CONCLUSIONS/INTERPRETATION:
The incidence rate of childhood type 1 diabetes continues to rise across Europe by an average of approximately 3-4% per annum, but the increase is not necessarily uniform, showing periods of less rapid and more rapid increase in incidence in some registers. This pattern of change suggests that important risk exposures differ over time in different European countries. Further time trend analysis and comparison of the patterns in defined regions is warranted.
Resumo:
IntroductionAutomated weaning systems may improve adaptation of mechanical support for a patient’s ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. Our objective was to compare mechanical ventilator weaning duration for critically ill adults and children when managed with automated systems versus non-automated strategies. Secondary objectives were to determine differences in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.MethodsElectronic databases were searched to 30 September 2013 without language restrictions. We also searched conference proceedings; trial registration websites; and article reference lists. Two authors independently extracted data and assessed risk of bias. We combined data using random-effects modelling.ResultsWe identified 21 eligible trials totalling 1,676 participants. Pooled data from 16 trials indicated that automated systems reduced the geometric mean weaning duration by 30% (95% confidence interval (CI) 13% to 45%), with substantial heterogeneity (I2 = 87%, P <0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not with surgical populations or using other systems. Automated systems reduced ventilation duration with no heterogeneity (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of effect on mortality, hospital LOS, reintubation, self-extubation and non-invasive ventilation following extubation. Automated systems reduced prolonged mechanical ventilation and tracheostomy. Overall quality of evidence was high.ConclusionsAutomated systems may reduce weaning and ventilation duration and ICU stay. Due to substantial trial heterogeneity an adequately powered, high quality, multi-centre randomized controlled trial is needed.