3 resultados para Non-collinear conservation blocks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity loss is a global problem with freshwater bivalves considered amongst the most
endangered biota. The freshwater pearl mussel, Margaritifera margaritifera, is declining
throughout its range owing to habitat degradation and overexploitation. In most of its range,
populations are regarded as reproductively non-functional which has led to the development
of captive breeding programmes. A novel method of releasing M. margaritifera was trialled,
with captive-bred juveniles being released into the rivers caged in ‘mussels silos’ (protective
concrete domes with ventilation creating upwelling to ensure water through flow). We
released 240 juvenile mussels and survival and growth rates were monitored for 18 months
post-release for three size classes: A (13.01-20.00mm); B (10.01-13.00mm); and C (4.01-
10.00mm). We explicitly tested two experimental treatments; one where sediment was added
to each silo (allowing mussels to orientate and burrow) and one without sediment. Survival
by the end of the experiment at month 18 was significantly higher for the largest size class at
97% (though growth was lowest in this cohort), and lowest for the smallest size class at 61%
(though growth was highest in this cohort). Survival and growth were unaffected by the
experimental treatment suggesting that adding sediment offered no advantage. Growth was
positively correlated with both water temperature and the particle size of suspended solids
(both of which were collinear, peaking in summer). There are a large number of ex situ
breeding programmes for freshwater pearl mussels throughout Europe and our finding
suggest that the use of ‘mussel silos’ could be a useful tool to protecting juvenile mussels
allowing them to be released at a relatively early stage of development, minimising the risk of
domestication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up.

METHODS: CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b-T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3-6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923.

FINDINGS: Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9-77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0-90·2) in the 74 Gy group, 90·6% (88·5-92·3) in the 60 Gy group, and 85·9% (83·4-88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68-1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99-1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported.

INTERPRETATION: Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer.

FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.