16 resultados para Nitric acid
Resumo:
The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.
Resumo:
Quantification and speciation of volatile selenium (Se) fluxes in remote areas has not been feasible previously, due to the absence of a simple and easily transportable trapping technique that preserves speciation. This paper presents a chemo-trapping method with nitric acid (HNO3) for volatile Se species, which preserves speciation of trapped compounds. The recovery and speciation of dimethylselenide (DMSe) and dimethyl diselenide (DMDSe) entrained through both concentrated nitric acid and hydrogen peroxide (H2O2) were compared by HPLC-ICP-MS and HPLC-HG-AFS analyses. It was demonstrated that trap reproducibility was better for nitric acid and a recovery of 65.2 +/- 1.9% for DMSe and 81.3 +/- 3.9% for DMDSe was found in nitric acid traps. HPLC-ES-MS identified dimethyl selenoxide (DMSeO) as the trapped product of DMSe. Methylseleninic acid (MSA) was identified to be the single product of DMDSe trapping. These oxidized derivatives have a high stability and low volatility, which makes nitric acid a highly attractive trapping liquid for volatile Se species and enables reconstruction of the speciation of those species. The presented trapping method is simple, quantifiable, reproducible, and robust and can potentially be applied to qualitatively and quantitatively study Se volatilization in a wide range of natural environments.
Resumo:
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (
Resumo:
Colourless needles of mercurous dimethylglyoximato nitrate, Hg-2(Dmg)(2)(NO3)(2), grow from a diluted nitric acid solution of mercurous nitrate and dimethylglyoxime. The crystal structure (triclinic, P (1) over bar, a = 728.50(13), b = 1066.8(2), c = 1167.9(2) pm, alpha = 93.78(2)degrees, beta = 94.16(2)degrees, gamma = 98.61(2)degrees, R-all = 0,0726) contains the cations [Hg-2(Dmg)(2)](2+) and
Resumo:
The article highlights new insights into production of thin titania films widely used as catalyst support in many modern reactors including capillary microreactors, microstructured fixed-bed reactors and falling film microreactors. Dip-coating of a Mania sol onto a Si substrate has been studied in the range of the sol viscosities of 1.5-2.5 mPa s and the sol withdrawal rates of 0.2-18 mm/s. Different viscosities of sols were created by addition of desired amounts of nitric acid to the synthesis mixture of titanium isopropoxide and Plutonic F127 in ethanol which allowed to control the rate of the condensation reactions. Uniform inesoporous titania coatings were obtained at the solvent withdrawal rates below 10 mm/s at sol viscosities in the range from 1.6 mPa s to 2.5 mPa s. There exists a limiting withdrawal rate corresponding to a capillary number of ca. 0.01 beyond which uniform titania films cannot be obtained. Below the limiting withdrawal rate, the coating thickness is a power function of the sol viscosity and withdrawal rate, both with an exponent of 2/3. The limiting withdrawal rate increases as the solvent evaporation rate increases and it decreases as the sol viscosity increases. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
The extraction of uranium(VI) from aqueous nitric acid solutions by tributylphosphate {TBP; 30%(v/v)} dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide was investigated. The experiments were performed in a Teflon microchannel of 0.5 mm internal diameter, while the dioxouranium(VI) concentrations in the aqueous and the ionic liquid phases were determined by UV-Vis spectroscopy. The effects of initial nitric acid concentration (0.01-3 M), residence time, and phase flow rate ratio were studied. It was found that, with increasing nitric acid concentration, the percentage of dioxouranium(VI) extracted decreased and then increased again, while the extraction efficiency followed a slightly different trend. Overall mass transfer coefficients varied between 0.049 s and 0.312 s . © 2012 Elsevier B.V. All rights reserved.
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
Organoarsonate-functionalized polyoxovanadates form upon the reduction of vanadates(V) in aqueous systems, whereby the underlying condensation reactions are influenced by the nature of the employed acid. In the presence of Cl− ions that derive from hydrochloric acid, a tetradecanuclear cage [VIV14O16(OH)8(O3AsC6H4-4-NH2)10]4– is obtained. When nitric acid is used, a condensed, decanuclear complex [V10O18(O3AsC6H4-4-NH2)7(DMF)2]5– forms. The latter organizes into a hexagonal packing arrangement in the solid state.
Resumo:
A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.
Resumo:
Background: Tobacco smoke is a major risk to the health of its users and arsenic is among the components of smoke present at concentrations of toxicological concern. There are significant variations in human toxicity between inorganic and organic arsenic species and the aim of this study was to determine whether there are predictable relationships among major arsenic species in tobacco that could be useful for risk assessment.
Methods: 14 samples of tobacco were studied spanning a wide range of concentrations in samples from different geographical regions, including certified reference materials and cigarette products. Inorganic and major organic arsenic species were extracted from powdered tobacco samples by nitric acid using microwave digestion. Concentrations of arsenic species in these extracts were determined using HPLC-ICPMS.
Results: The concentrations of total inorganic arsenic species range from 144 to 3914 mu g kg(-1), while organic species dimethylarsinic acid (DMA) ranges from 21 to 176 mu g As kg(-1), and monomethylarsonic acid (MA) ranges from 30 to 116 mu g kg(-1). The percentage of species eluted compared to the total arsenic extracted ranges from 11.1 to 36.8% suggesting that some As species (possibly macro-molecules, strongly complexed or in organic forms) do not elute from the column. This low percentage of column-speciated arsenic is indicative that more complex forms of arsenic exist in the tobacco. All the analysed species correlate positively with total arsenic concentration over the whole compositional range and regression analysis indicates a consistent ratio of about 4:1 in favour of inorganic arsenic compared with MA + DMA.
Conclusions: The dominance of inorganic arsenic species among those components analysed is a marked feature of the diverse range of tobaccos selected for study. Such consistency is important in the context of a WHO expert panel recommendation to regulate tobacco crops and products using total arsenic concentration. If implemented more research would be required to develop models that accurately predict the smoker's exposure to reduced inorganic arsenic species on the basis of leaf or product concentration and product design features.
Resumo:
Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst
Resumo:
Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.
Resumo:
The incidence of esophageal adenocarcinoma has increased in recent years, and Barrett's esophagus is a recognized risk factor. Gastroesophageal reflux of acid and/or bile is linked to these conditions and to reflux esophagitis. Inflammatory disorders can lead to carcinogenesis through activation of "prosurvival genes," including cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Increased expression of these enzymes has been found in esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Polymorphic variants in COX-2 and iNOS genes may be modifiers of risk of these conditions. In a population-based case-control study, we examined associations of the COX-2 8473 T>C and iNOS Ser 608 Leu (C>T) polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), and reflux esophagitis (n = 230) and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using TaqMan allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. The presence of at least one COX-2 8473 C allele was associated with a significantly increased risk of esophageal adenocarcinoma (adjusted odds ratio, 1.58; 95% confidence interval, 1.04-2.40). There was no significant association between this polymorphism and risk of Barrett's esophagus or reflux esophagitis or between the iNOS Ser 608 Leu polymorphism and risk of these esophageal conditions. Our study suggests that the COX-2 8473 C allele is a potential genetic marker for susceptibility to esophageal adenocarcinoma.
Resumo:
Nitric oxide generates slow electrical oscillations (SEOs) in cells near the myenteric edge of the circular muscle layer, which resemble slow waves generated by interstitial cells of Cajal (ICCs) at the submucosal edge of this muscle. The properties of SEOs were studied to determine whether these events are similar to slow waves. Rapid frequency membrane potential oscillations (MPOs; 16 +/- 1 cycles/min and 9.6 +/- 0.2 mV) were recorded from control muscles near the myenteric edge. Sodium nitroprusside (0.3 microM) reduced MPOs and initiated SEOs (1.3 +/- 0.3 cycles/min and 13.4 +/- 1.4 mV amplitude). SEOs were abolished by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxaline-1-one (10 microM). MPOs were abolished by nifedipine (1 microM), whereas SEO frequency increased and the amount of depolarization decreased. BAY K 8644 (1 microM) prolonged SEOs and reduced their frequency. SEOs were abolished by Ni(2+) (0.5 mM), low Ca(2+) solution (0.1 mM Ca(2+)), cyclopiazonic acid (10 microM), and the mitochondrial uncouplers antimycin (10 microM) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (1 microM). Oligomycin (10 microM) was without effect. These effects are similar to those described for colonic slow waves. Our results suggest that nitric oxide-induced SEOs are similar in mechanism to slow waves, an activity not previously thought to be generated by myenteric pacemakers.