206 resultados para Neural Conduction
Resumo:
A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.
Simulation of Microhardness Profiles for Nitrocarburized Surface Layers by Artificial Neural Network
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
A dynamical method for simulating steady-state conduction in atomic and molecular wires is presented which is both computationally and conceptually simple. The method is tested by calculating the current-voltage spectrum of a simple diatomic molecular junction, for which the static Landauer approach produces multiple steady-state solutions. The dynamical method quantitatively reproduces the static results and provides information on the stability of the different solutions. (c) 2006 American Institute of Physics.