42 resultados para Nerve blocks, nerve stimulator, regional anesthesia.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To examine the influence of continuing administration of sevoflurane or isoflurane during reversal of rocuronium induced neuromuscular block with neostigmine. Methods: One hundred and twenty patients, divided into three equal groups, were randomly allocated to maintenance of anesthesia with sevoflurane, isoflurane or propofol. Neuromuscular block was induced with rocuronium and monitored using train-of-four (TOF) stimulation of the ulnar nerve and recording the force of contraction of the adductor pollicis muscle. Neostigmine was administered when the first response in TOF had recovered to 25%. At this time the volatile agent administration was stopped or propofol dosage reduced in half the patients in each group (n = 20 in each group). The times to attain TOF ratio of 0.8, and the number of patients attaining this end point within 15 min were recorded. Results: The times (mean ± SD) to recovery of the TOF ratio to 0.8 were 12.0 ± 5.5 and 6.8 ± 2.3 min in the sevoflurane continued and sevoflurane stopped groups, 9.0 ± 8.3 and 5.5 ± 3.0 min in the isoflurane continued and isoflurane stopped groups, and 5.2 ± 2.8 and 4.7 ±1.5 min in the propofol continued and propofol stopped groups (P <0.5- 01). Only 9 and 15 patients in the sevoflurane and isoflurane continued groups respectively had attained a TOF ratio of 0.8 within 15 min (P <0.001 for sevoflurane). Conclusions: The continued administration of sevoflurane, and to a smaller extent isoflurane, results in delay in attaining adequate antagonism of rocuronium induced neuromuscular block.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systemic and localised complications after administration of local anaesthetic for dental procedures are well recognised. We present two cases of patients with trismus and sensory deficit that arose during resolution of trismus as a delayed complication of inferior alveolar nerve block.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.