4 resultados para Natural ventilation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well planned natural ventilation strategies and systems in the built environments may provide healthy and comfortable indoor conditions, while contributing to a significant reduction in the energy consumed by buildings. Computational Fluid Dynamics (CFD) is particularly suited for modelling indoor conditions in naturally ventilated spaces, which are difficult to predict using other types of building simulation tools. Hence, accurate and reliable CFD models of naturally ventilated indoor spaces are necessary to support the effective design and operation of indoor environments in buildings. This paper presents a formal calibration methodology for the development of CFD models of naturally ventilated indoor environments. The methodology explains how to qualitatively and quantitatively verify and validate CFD models, including parametric analysis utilising the response surface technique to support a robust calibration process. The proposed methodology is demonstrated on a naturally ventilated study zone in the library building at the National University of Ireland in Galway. The calibration process is supported by the on-site measurements performed in a normally operating building. The measurement of outdoor weather data provided boundary conditions for the CFD model, while a network of wireless sensors supplied air speeds and air temperatures inside the room for the model calibration. The concepts and techniques developed here will enhance the process of achieving reliable CFD models that represent indoor spaces and provide new and valuable information for estimating the effect of the boundary conditions on the CFD model results in indoor environments. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.