5 resultados para Natural engineering


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of alkali-activated binders with superior engineering properties and longer durability has emerged as an alternative to ordinary portland cement (OPC). It is possible to use alkali-activated natural pozzolans to prepare environmentally friendly geopolymer cement leading to the concept of sustainable development. This paper presents a summary of an experimental work that was conducted to determine mechanical strength, modulus of elasticity, ultrasonic pulse velocity, and shrinkage of different concrete mixtures prepared with alkali-activated Iranian natural pozzolans—namely Taftan andesite and Shahindej dacite, both with and without calcining. Test data were used for Taftan pozzolan to identify the effects of water-binder ratios (w/b) and curing conditions on the properties of the geopolymer concrete, whereas the influence of material composition was studied by activating Shahindej pozzolan both in the natural and calcined states. The results show that alkali-activated natural pozzolan (AANP) concretes develop moderate-to-high mechanical strength with a high modulus of elasticity and a shrinkage much lower than with OPC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of green composite from natural fibers has gained increasing interests due to the environmental and sustainable benefits when compared with petroleum based non-degradable materials. However, a big challenge of green composites is the diversity of fiber sources, because of the large variation in the properties and characteristics of the lignocellulosic renewable resource. The lignocellulosic fibers/natural fibers used to reinforce green composites are reviewed in this chapter. A classification of fiber types and sources, the properties of various natural fibers, including structure, composition, physical and chemical properties are focused; followed by the impacts of natural fibers on composite properties, with identification of the main pathways from the natural fibers to the green composite. Furthermore, the main challenges and future trend of natural fibers are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:


In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.


Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of pozzolanic activity is essential for estimating the reaction of a material as pozzolan. Natural pozzolans can be activated and condensed with sodium silicate in an alkaline environment to synthesize high performance cementitious construction materials with low environmental impact. In this paper, the pozzolanic activities of five natural pozzolans are studied. The correlation between type and chemical composition of natural pozzolan, which affects the formation of the geopolymer gel phase, both for the calcined and untreated natural pozzolans, have been reviewed. The improvement in pozzolanic properties was studied following heat treatment including calcinations and/or elevated curing temperature by using alkali solubility, and compressive strength tests. A model was developed to allow prediction of the alkali-activated pozzolan strength versus their chemical compositions, alkali solubility, and crystallinity.