22 resultados para Natural Gas (NG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to synergistic chemical and physical absorption. The formulated ionic liquid/water mixtures show greatly enhanced carbon dioxide solubility relative to both anhydrous ionic liquids and aqueous ionic liquid solutions, and are competitive with commercial chemical absorbers, such as activated N-methyldiethanolamine or monoethanolamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(ii) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Displacement of fossil fuel-based power through biomass co-firing could reduce the greenhouse gas (GHG) emissions from fossil fuels. In this study, data-intensive techno-economic models were developed to evaluate different co-firing technologies as well as the configurations of these technologies. The models were developed to study 60 different scenarios involving various biomass feedstocks (wood chips, wheat straw, and forest residues) co-fired either with coal in a 500 MW subcritical pulverized coal (PC) plant or with natural gas in a 500 MW natural gas combined cycle (NGCC) plant to determine their technical potential and costs, as well as to determine environmental benefits. The results obtained reveal that the fully paid-off coal-fired power plant co-fired with forest residues is the most attractive option, having levelized costs of electricity (LCOE) of $53.12–$54.50/MW h and CO2 abatement costs of $27.41–$31.15/tCO2. When whole forest chips are co-fired with coal in a fully paid-off plant, the LCOE and CO2 abatement costs range from $54.68 to $56.41/MW h and $35.60 to $41.78/tCO2, respectively. The LCOE and CO2 abatement costs for straw range from $54.62 to $57.35/MW h and $35.07 to $38.48/tCO2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionic liquids (ILs) are popular designer green chemicals with great potential for use in diverse energy-related applications. Apart from the well-known low vapor pressure, the physical properties of ILs, such as hydrogen-bond-forming capacity, physical state, shape, and size, can be fine-tuned for specific applications. Natural gas hydrates are easily formed in gas pipelines and pose potential problems to the oil and natural gas industry, particularly during deep-sea exploration and production. This review summarizes the recent advances in IL research as dual-function gas hydrate inhibitors. Almost all of the available thermodynamic and kinetic inhibition data in the presence of ILs have been systematically reviewed to evaluate the efficiency of ILs in gas hydrate inhibition, compared to other conventional thermodynamic and kinetic gas hydrate inhibitors. The principles of natural gas hydrate formation, types of gas hydrates and their inhibitors, apparatuses and methods used, reported experimental data, and theoretical methods are thoroughly and critically discussed. The studies in this field will facilitate the design of advanced ILs for energy savings through the development of efficient low-dosage gas hydrate inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an age of depleting oil reserves and increasing energy demand, humanity faces a stalemate between environmentalism and politics, where crude oil is traded at record highs yet the spotlight on being ‘green’ and sustainable is stronger than ever. A key theme on today’s political agenda is energy independence from foreign nations, and the United Kingdom is bracing itself for nuclear renaissance which is hoped will feed the rapacious centralised system that the UK is structured upon. But what if this centralised system was dissembled, and in its place stood dozens of cities which grow and monopolise from their own energy? Rather than one dominant network, would a series of autonomous city-based energy systems not offer a mutually profitable alternative? Bio-Port is a utopian vision of a ‘Free Energy City’ set in Liverpool, where the old dockyards, redundant space, and the Mersey Estuary have been transformed into bio-productive algae farms. Bio-Port Free Energy City is a utopian ideal, where energy is superfluous; in fact so abundant that meters are obsolete. The city functions as an energy generator and thrives from its own product with minimal impact upon the planet it inhabits. Algaculture is the fundamental energy source, where a matrix of algae reactors swamp the abandoned dockyards; which themselves have been further expanded and reclaimed from the River Mersey. Each year, the algae farm is capable of producing over 200 million gallons of bio-fuel, which in-turn can produce enough electricity to power almost 2 million homes. The metabolism of Free-Energy City is circular and holistic, where the waste products of one process are simply the inputs of a new one. Livestock farming – once traditionally a high-carbon countryside exercise has become urbanised. Cattle are located alongside the algae matrix, and waste gases emitted by farmyards and livestock are largely sequestered by algal blooms or anaerobically converted to natural gas. Bio-Port Free Energy City mitigates the imbalances between ecology and urbanity, and exemplifies an environment where nature and the human machine can function productively and in harmony with one another. According to James Lovelock, our population has grown in number to the point where our presence is perceptibly disabling the planet, but in order to reverse the effects of our humanist flaws, it is vital that new eco-urban utopias are realised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. The analysis indicated that high dibromomethane selectivity is attainable (over 90%) accompanied by high methane conversions. The metathesis of dibromomethane can provide an alternative route to the conversion of methane (natural gas) economically with smaller installations than the current syn-gas route. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30ktyr of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops. © 2010 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Farm incomes in Ireland are in decline and many farmers would operate at a loss in the absence of subsidies. Agriculture is responsible for 27% of Ireland's greenhouse gas emissions and is the largest contributing sector. Penetration of renewable energy in the heat and transport sectors is falling short of targets, and there is no clear plan for achieving them. The anaerobic digestion of grass to produce biogas or biomethane is put forward as a multifaceted solution, which could help meet energy and emissions targets, reduce dependence on imported energy, and provide additional farm income. This paper addresses the economic viability of such a system. Grass biogas/biomethane fares poorly under the current combined heat and power tariff structure, which is geared toward feedstock that attracts a gate fee. Tariff structures similar to those used in other countries are necessary for the industry to develop. Equally, regulation should be implemented to allow injection of biomethane into the gas grid in Ireland. Blends of natural gas and biomethane can be sold, offering a cost-competitive green fuel. Sale as a renewable transport fuel could allow profitability for the farmer and savings for the consumer, but suffers due to the lack of a market. Under current conditions, the most economically viable outlet for grass biomethane is sale as a renewable heating fuel. The key to competitiveness is the existing natural gas infrastructure that enables distribution of grass biomethane, and the renewable energy targets that allow renewable fuels to compete against each other. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural gas extracted from hydraulically fractured shale formations potentially has a big impact on the global energy landscape. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct realizations of numerical modeling simulations to assess fluid flow and chloride transport from a synthetic Bowland Shale over a period of 11,000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. Chloride mass exchange between fractures and the rock matrix was fully accounted for in the model. The assessment was carried out to investigate fluid and chloride mass fluxes before, during, and after hydraulic fracturing of the Bowland Shale. Impacts of the upward fracture height and aperture, as well as hydraulic conductivity of the multilayered bedrock system, are also included this assessment. This modeling revealed that the hydraulically fractured Bowland Shale is unlikely to pose a risk to its overlying groundwater quality when the induced fracture aperture is ≤200 µm. With the fracture aperture ≥1000 µm, the upward chloride flux becomes very sensitive to the upward fracture height growth and hydraulic conductivity of the multilayered bedrock system. In the extremely unlikely event of the upward fracture growth directly connecting the shale formation to the overlying Sherwood Sandstone aquifer with the fracture aperture ≥1000 µm, the upward chloride mass flux could potentially pose risks to the overlying aquifer in 100 years. The model study also revealed that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, reducing further upward flux toward the overlying aquifers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While the benefits of renewable energy are well known and used to influence government policy there are a number of problems which arise from having significant quantities of renewable energies on an electricity grid. The most notable problem stems from their intermittent nature which is often out of phase with the demands of the end users. This requires the development of either efficient energy storage systems, e.g. battery technology, compressed air storage etc. or through the creation of demand side management units which can utilise power quickly for manufacturing operations. Herein a system performing the conversion of synthetic biogas to synthesis gas using wind power and an induction heating system is shown. This approach demonstrates the feasibility of such techniques for stabilising the electricity grid while also providing a robust means of energy storage. This exemplar is also applicable to the production of hydrogen from the steam reforming of natural gas.