9 resultados para Natural Computing
Resumo:
We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.
Resumo:
For many years psychological research on facial expression of emotion has relied heavily on a recognition paradigm based on posed static photographs. There is growing evidence that there may be fundamental differences between the expressions depicted in such stimuli and the emotional expressions present in everyday life. Affective computing, with its pragmatic emphasis on realism, needs examples of natural emotion. This paper describes a unique database containing recordings of mild to moderate emotionally coloured responses to a series of laboratory based emotion induction tasks. The recordings are accompanied by information on self-report of emotion and intensity, continuous trace-style ratings of valence and intensity, the sex of the participant, the sex of the experimenter, the active or passive nature of the induction task and it gives researchers the opportunity to compare expressions from people from more than one culture.
Resumo:
In the reinsurance market, the risks natural catastrophes pose to portfolios of properties must be quantified, so that they can be priced, and insurance offered. The analysis of such risks at a portfolio level requires a simulation of up to 800 000 trials with an average of 1000 catastrophic events per trial. This is sufficient to capture risk for a global multi-peril reinsurance portfolio covering a range of perils including earthquake, hurricane, tornado, hail, severe thunderstorm, wind storm, storm surge and riverine flooding, and wildfire. Such simulations are both computation and data intensive, making the application of high-performance computing techniques desirable.
In this paper, we explore the design and implementation of portfolio risk analysis on both multi-core and many-core computing platforms. Given a portfolio of property catastrophe insurance treaties, key risk measures, such as probable maximum loss, are computed by taking both primary and secondary uncertainties into account. Primary uncertainty is associated with whether or not an event occurs in a simulated year, while secondary uncertainty captures the uncertainty in the level of loss due to the use of simplified physical models and limitations in the available data. A combination of fast lookup structures, multi-threading and careful hand tuning of numerical operations is required to achieve good performance. Experimental results are reported for multi-core processors and systems using NVIDIA graphics processing unit and Intel Phi many-core accelerators.