76 resultados para Nanofiber structured cathode
Resumo:
In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.
Resumo:
Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.
Resumo:
We have operated 25-100 mu m diameter radio frequency microhollow cathode discharges stably, for many hours, in neon and in argon. Electrical and spectroscopic measurements were used to explore three possible electron heating modes and obtain detail regarding the electron energy distribution. Analysis points to the possibility of pendular electron heating at low voltages.
Resumo:
This investigation describes the formulation and characterization of theologically structured vehicles (RSVs) designed for improved drug delivery to the vagina. Interactive, multicomponent, polymeric platforms were manufactured containing hydroxyethylcellulose (HEC, 5% w/w) polyvinylpyrrolidone (PVP, 4% w/w), Pluronic (PL, 0 or 10% w/w), and either polycarbophil (PC, 3% w/w) or poly(methylvinylether-co-maleic anhydride) (Gantrez S97, 3% w/w) as a mucoadhesive agent. The rheological (torsional and dynamic), mechanical (compressional), and mucoadhesive properties were characterized and shown to be dependent upon the mucoadhesive agent used and the inclusion/exclusion of PL. The dynamic theological properties of the gel platforms were also assessed following dilution with simulated vaginal fluid (to mimic in vivo dilution). RSVs containing PC were more rheologically structured than comparator formulations containing GAN. This trend was also reflected in formulation hardness, compressibility, consistency, and syringeability. Moreover, formulations containing PL (10% w/w) were more theologically structured than formulations devoid of PL. Dilution with simulated vaginal fluids significantly decreased rheological structure, although RSVs still retained a highly elastic stnicture (G' > G '' and tan delta <1). Furthermore, RSVs exhibited sustained drug release properties that were shown to be dependent upon their rheological structure. It is considered that these semisolid drug delivery systems may be useful as site-retentive platforms for the sustained delivery of therapeutic agents to the vagina.
Resumo:
The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.
Resumo:
Rheologically structured vehicle (RSV) gels were developed as delivery systems for vaginal mucosal vaccination with an HIV-1 envelope glycoprotein (CN54gp140). RSVs comprised a mucoadhesive matrix forming and vaginal fluid absorbing polymer. The mucoadhesive and rheological properties of the RSVs were evaluated in vitro, and the distribution, antigenicity and release of CN54gp140 were analysed by ELISA. CN54gp140 was uniformly distributed within the RSVs and continuously released in vitro in an antigenically intact form over 24 h. Vaginal administration to rabbits induced specific serum IgG, and IgG and IgA in genital tract secretions. The RSVs are a viable delivery modality for vaginal immunization.