27 resultados para NUMERICAL-SIMULATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron beam ions traps (EBITs) are widely used to study highly charged ions (HCIs). In an EBIT, a high energy electron beam collides with atoms and ions to generate HCIs in the trap region. It is important to study the physics in the trap. The atomic processes, such as electron impact ionisation (EI), radiative recombination (RR), dielectronic recombination (DR) and charge exchange (CX), occur in the trap and numerical simulation can give some parameters for design, predict the composition and describe charge state evolution in an EBIT [Phys. Rev. A 43 (199 1) 4861]. We are presently developing a new code, which additionally includes a description of the overlaps between the ion clouds of the various charge-states. It has been written so that it can simulate experiments where various machine parameters (e.g. beam energy and current) can vary throughout the simulation and will be able to use cross- sections either based on scaling laws or derived from atomic structure calculations. An object-oriented method is used in developing the new software, which is an efficient way to organize and write code. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with modelling and experimental verification of desalination theory (surface force pore flow) . The work has direct application in desalination of sea water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.