2 resultados para N-contractive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define and prove the existence of free Banach lattices in the category of Banach lattices and contractive lattice homomorphisms, and establish some of their fundamental properties. We give much more detailed results about their structure in the case when there are only a finite number of generators, and give several Banach lattice characterizations of the number of generators being, respectively, one, finite or countable. We define a Banach lattice P to be projective if, whenever X is a Banach lattice, J is a closed ideal in X, Q : X → X/J is the quotient map, T: P → X/J is a linear lattice homomorphism and ε > 0, there exists a linear lattice homomorphism : P → X such thatT = Q º and ∥∥ ≤ (1 + ε)∥T∥. We establish the connection between projective Banach lattices and free Banach lattices, describe several families of Banach lattices that are projective and prove that some are not.