4 resultados para Mushrooms, Poisonous.
Resumo:
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.
Resumo:
Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1 μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9 ± 0.1 μg L−1 MC-LR, 1.3 ± 0.1 μg L−1 CYN, 61 ± 4 μg L−1 ANA-a, 5.4 ± 0.4 μg L−1 STX and 4.9 ± 0.9 μg L−1 DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC–IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC–IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.
Resumo:
In the European Union, food is considered safe with regard to Listeria monocytogenes if its numbers do not exceed 100 cfu/g throughout the shelf-life of the food. Therefore, it is important to determine if a food supports growth of L. monocytogenes. Challenge tests are laboratory-based studies that measure the growth of L. monocytogenes on artificially contaminated food stored under foreseeable conditions of transportation, distribution and storage. The aim of this study was to elaborate and optimize a user-friendly protocol to perform challenge tests on food and to apply it to determine whether growth of L. monocytogenes is supported during the production and distribution of a potentially risky food i.e. mushrooms. A three-strain mixture of L. monocytogenes was inoculated onto three independent batches of whole mushrooms, sliced mushrooms, mushroom casing and mushroom substrate at a concentration of about 100 -1000 cfu/g. The batches were incubated at potential abuse temperatures, as a worst case scenario, and at intervals during storage L. monocytogenes numbers, % moisture and pH were determined. The results showed that the sliced and whole mushrooms supported growth of L. monocytogenes while mushroom casing allowed survival but did not support growth. Mushroom substrate showed a rich background microflora able of growing in Listeria selective media which hindered enumeration of L. monocytogenes. Combase predictions were not always accurate, indicating that challenge tests are a necessary part of growth determination of L. monocytogenes.
Resumo:
Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates