9 resultados para Multiple-scale processing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Graph analytics is an important and computationally demanding class of data analytics. It is essential to balance scalability, ease-of-use and high performance in large scale graph analytics. As such, it is necessary to hide the complexity of parallelism, data distribution and memory locality behind an abstract interface. The aim of this work is to build a scalable graph analytics framework that does not demand significant parallel programming experience based on NUMA-awareness.
The realization of such a system faces two key problems:
(i)~how to develop a scale-free parallel programming framework that scales efficiently across NUMA domains; (ii)~how to efficiently apply graph partitioning in order to create separate and largely independent work items that can be distributed among threads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a multiuser multicarrier downlink communication system in which the base station (BS) employs a large number of antennas. By assuming frequency-division duplex operation, we provide a beam domain channel model as the number of BS antennas grows asymptotically large. With this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate before developing necessary conditions to asymptotically maximize the upper bound, with only statistical channel state information at the BS. Inspired by these conditions, we propose a beam division multiple access (BDMA) transmission scheme, where the BS communicates with users via different beams. For BDMA transmission, we design user scheduling to select users within non-overlapping beams, work out an optimal pilot design under a minimum mean square error criterion, and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. The proposed BDMA scheme reduces significantly the pilot overhead, as well as, the processing complexity at transceivers. Simulations demonstrate the high spectral efficiency of BDMA transmission and the advantages in the bit error rate performance of the proposed pilot sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a multipair relay channel, where multiple sources communicate with multiple destinations with the help of a full-duplex (FD) relay station (RS). All sources and destinations have a single antenna, while the RS is equipped with massive arrays. We assume that the RS estimates the channels by using training sequences transmitted from sources and destinations. Then, it uses maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference (LI) effect, we propose two massive MIMO processing techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the RS. We derive an exact achievable rate in closed-form and evaluate the system spectral efficiency. We show that, by doubling the number of antennas at the RS, the transmit power of each source and of the RS can be reduced by 1.5 dB if the pilot power is equal to the signal power and by 3 dB if the pilot power is kept fixed, while maintaining a given quality-of-service. Furthermore, we compare FD and half-duplex (HD) modes and show that FD improves significantly the performance when the LI level is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the impact of co-channel interference on the security performance of multiple amplify-and-forward (AF) relaying networks, where N intermediate AF relays assist the data transmission from the source to the destination. The relays are corrupted by multiple co-channel interferers, and the information transmitted from the relays to destination can be overheard by the eavesdropper. In order to deal with the interference and wiretap, the best out of N relays is selected for security enhancement. To this end, we derive a novel lower bound on the secrecy outage probability (SOP), which is then utilized to present two best relay selection criteria, based on the instantaneous and statistical channel information of the interfering links. For these criteria and the conventional maxmin criterion, we quantify the impact of co-channel interference and relay selection by deriving the lower bound on the SOP. Furthermore, we derive the asymptotic SOP for each criterion, to explicitly reveal the impact of transmit power allocation among interferers on the secrecy performance, which offers valuable insights into practical design. We demonstrate that all selection criteria achieve full secrecy diversity order N, while the proposed in this paper two criteria outperform the conventional max-min scheme.