2 resultados para Multiple Account
Resumo:
We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.
Resumo:
There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.