2 resultados para Multinomial logit models with random coefficients (RCL)
Resumo:
Recent studies have shown that cancer risk related to overweight and obesity is mediated by time and might be better approximated by using life years lived with excess weight. In this study we aimed to assess the impact of overweight duration and intensity in older adults on the risk of developing different forms of cancer. Study participants from seven European and one US cohort study with two or more weight assessments during follow-up were included (n = 329,576). Trajectories of body mass index (BMI) across ages were estimated using a quadratic growth model; overweight duration (BMI ≥ 25) and cumulative weighted overweight years were calculated. In multivariate Cox models and random effects analyses, a longer duration of overweight was significantly associated with the incidence of obesity-related cancer [overall hazard ratio (HR) per 10-year increment: 1.36; 95 % CI 1.12-1.60], but also increased the risk of postmenopausal breast and colorectal cancer. Additionally accounting for the degree of overweight further increased the risk of obesity-related cancer. Risks associated with a longer overweight duration were higher in men than in women and were attenuated by smoking. For postmenopausal breast cancer, increased risks were confined to women who never used hormone therapy. Overall, 8.4 % of all obesity-related cancers could be attributed to overweight at any age. These findings provide further insights into the role of overweight duration in the etiology of cancer and indicate that weight control is relevant at all ages. This knowledge is vital for the development of effective and targeted cancer prevention strategies.
Resumo:
Peer effects in adolescent cannabis are difficult to estimate, due in part to the lack of appropriate data on behaviour and social ties. This paper exploits survey data that have many desirable properties and have not previously been used for this purpose. The data set, collected from teenagers in three annual waves from 2002-2004 contains longitudinal information about friendship networks within schools (N = 5,020). We exploit these data on network structure to estimate peer effects on adolescents from their nominated friends within school using two alternative approaches to identification. First, we present a cross-sectional instrumental variable (IV) estimate of peer effects that exploits network structure at the second degree, i.e. using information on friends of friends who are not themselves ego’s friends to instrument for the cannabis use of friends. Second, we present an individual fixed effects estimate of peer effects using the full longitudinal structure of the data. Both innovations allow a greater degree of control for correlated effects than is commonly the case in the substance-use peer effects literature, improving our chances of obtaining estimates of peer effects than can be plausibly interpreted as causal. Both estimates suggest positive peer effects of non-trivial magnitude, although the IV estimate is imprecise. Furthermore, when we specify identical models with behaviour and characteristics of randomly selected school peers in place of friends’, we find effectively zero effect from these ‘placebo’ peers, lending credence to our main estimates. We conclude that cross-sectional data can be used to estimate plausible positive peer effects on cannabis use where network structure information is available and appropriately exploited.