2 resultados para Multinomial Logit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) of schizophrenia have yielded more than 100 common susceptibility variants, and strongly support a substantial polygenic contribution of a large number of small allelic effects. It has been hypothesized that familial schizophrenia is largely a consequence of inherited rather than environmental factors. We investigated the extent to which familiality of schizophrenia is associated with enrichment for common risk variants detectable in a large GWAS. We analyzed single nucleotide polymorphism (SNP) data for cases reporting a family history of psychotic illness (N = 978), cases reporting no such family history (N = 4,503), and unscreened controls (N = 8,285) from the Psychiatric Genomics Consortium (PGC1) study of schizophrenia. We used a multinomial logistic regression approach with model-fitting to detect allelic effects specific to either family history subgroup. We also considered a polygenic model, in which we tested whether family history positive subjects carried more schizophrenia risk alleles than family history negative subjects, on average. Several individual SNPs attained suggestive but not genome-wide significant association with either family history subgroup. Comparison of genome-wide polygenic risk scores based on GWAS summary statistics indicated a significant enrichment for SNP effects among family history positive compared to family history negative cases (Nagelkerke's R(2 ) = 0.0021; P = 0.00331; P-value threshold <0.4). Estimates of variability in disease liability attributable to the aggregate effect of genome-wide SNPs were significantly greater for family history positive compared to family history negative cases (0.32 and 0.22, respectively; P = 0.031). We found suggestive evidence of allelic effects detectable in large GWAS of schizophrenia that might be specific to particular family history subgroups. However, consideration of a polygenic risk score indicated a significant enrichment among family history positive cases for common allelic effects. Familial illness might, therefore, represent a more heritable form of schizophrenia, as suggested by previous epidemiological studies.