6 resultados para Multicommodity flow algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method for complex power flow tracing that can be used for allocating the transmission loss to loads or generators. Two algorithms for upstream tracing (UST) and downstream tracing (DST) of the complex power are introduced. UST algorithm traces the complex power extracted by loads back to source nodes and assigns a fraction of the complex power flow through each line to each load. DST algorithm traces the output of the generators down to the sink nodes determining the contributions of each generator to the complex power flow and losses through each line. While doing so, active- and reactive-power flows as well as complex losses are considered simultaneously, not separately as most of the available methods do. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses are carried out using an equation, which has a physical basis, and considers the coupling between active- and reactive-power flows as well as the cross effects of active and reactive powers on active and reactive losses. The tracing algorithms introduced can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a lookup circuit with advanced memory techniques and algorithms that examines network packet headers at high throughput rates. Hardware solutions and test scenarios are introduced to evaluate the proposed approach. The experimental results show that the proposed lookup circuit is able to achieve at least 39 million packet header lookups per second, which facilitates the application of next-generation stateful packet classifications at beyond 20Gbps internet traffic throughput rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a methodology for implementing a complete Digital Signal Processing (DSP) system onto a heterogeneous network including Field Programmable Gate Arrays (FPGAs) automatically. The methodology aims to allow design refinement and real time verification at the system level. The DSP application is constructed in the form of a Data Flow Graph (DFG) which provides an entry point to the methodology. The netlist for parts that are mapped onto the FPGA(s) together with the corresponding software and hardware Application Protocol Interface (API) are also generated. Using a set of case studies, we demonstrate that the design and development time can be significantly reduced using the methodology developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.