7 resultados para Multi-stakeholder reflection
Resumo:
The aspiration the spatial planning should act as the main coordinating function for the transition to a sustainable society is grounded on the assumption that it is capable of incorporating both a strong evidence base of environmental accounting for policy, coupled with opportunities for open, deliberative decision-making. While there are a number of increasingly sophisticated methods (such as material flow analysis and ecological footprinting) that can be used to longitudinally determine the impact of policy, there are fewer that can provide a robust spatial assessment of sustainability policy. In this paper, we introduce the Spatial Allocation of Material Flow Analysis (SAMFA) model, which uses the concept of socio-economic metabolism to extrapolate the impact of local consumption patterns that may occur as a result of the local spatial planning process at multiple spatial levels. The initial application the SAMFA model is based on County Kildare in the Republic of Ireland, through spatial temporal simulation and visualisation of construction material flows and associated energy use in the housing sector. Thus, while we focus on an Ireland case study, the model is applicable to spatial planning and sustainability research more generally. Through the development and evaluation of alternative scenarios, the model appears to be successful in its prediction of the cumulative resource and energy impacts arising from consumption and development patterns. This leads to some important insights in relation to the differential spatial distribution of disaggregated allocation of material balance and energy use, for example that rural areas have greater resource accumulation (and are therefore in a sense “less sustainable”) than urban areas, confirming that rural housing in Ireland is both more material and energy intensive. This therefore has the potential to identify hotspots of higher material and energy use, which can be addressed through targeted planning initiatives or focussed community engagement. Furthermore, due to the ability of the model to allow manipulation of different policy criteria (increased density, urban conservation etc), it can also act as an effective basis for multi-stakeholder engagement.
Resumo:
Studies of urban metabolism provide important insights for environmental management of cities, but are not widely used in planning practice due to a mismatch of data scale and coverage. This paper introduces the Spatial Allocation of Material Flow Analysis (SAMFA) model as a potential decision support tool aimed as a contribution to overcome some of these difficulties and describes its pilot use at the county level in the Republic of Ireland. The results suggest that SAMFA is capable of identifying hotspots of higher material and energy use to support targeted planning initiatives, while its ability to visualise different policy scenarios supports more effective multi-stakeholder engagement. The paper evaluates this pilot use and sets out how this model can act as an analytical platform for the industrial ecology–spatial planning nexus.
Resumo:
From a macro perspective, it is widely acknowledged that University incubation models within a region are important stimulants of economic development through innovation and job creation. With the emergence of quadruple helix innovation ecosystems, universities have had re-evaluate their University incubation activity and models to engage more fully with industry and end users. However, within a given region, the type of University may influence their ability to engage with quadruple helix stakeholders and consequently impact their incubation activity. To date there is a scarcity of research which explores this 'meso' environment and its subsequent impact on University incubation models. Therefore, the aim of this paper is to use a stakeholder lens to explore University Incubation models within unique regional and organisational characteristics and constraints. The research methodology employed was based on a comparative case analysis of incubation of two different Universities within a UK peripheral region. It was found that variances existed in relation to the two universities incubation models which were found to result from both regional (macro environment) and organisational (meso environment) influences (i.e. university type). This research contributes to both regional and national agendas by empirically illustrating the need for appropriate design and tailoring of university incubation models (via acknowledgement of quadruple helix stakeholder influence) to incorporate contextual influences rather than adopting a best practise approach.
Resumo:
Interaction with ecological models can improve stakeholder participation in fisheries management. Problems exist in efficiently communicating outputs to stakeholders and an objective method of structuring stakeholder differences is lacking. This paper aims to inform the design of a multi-user communication interface for fisheries management by identifying functional stakeholder groups. Intuitive categorisation of stakeholders, derived from survey responses, is contrasted with an Evidence-Based method derived from analysis of stakeholder literature. Intuitive categorisation relies on interpretation and professional judgement when categorising stakeholders among conventional stakeholder groups. Evidence-Based categorisation quantitatively characterises each stakeholder with a vector of four management objective interest-strength values (Yield, Employment, Profit and Ecosystem Preservation). Survey respondents agreed little in forming intuitive groups and the groups were poorly defined and heterogeneous in interests. In contrast the Evidence-Based clusters were well defined and largely homogeneous, so more useful for identifying functional relations with model outputs. The categorisations lead to two different clusterings of stakeholders and suggest unhelpful stereotyping of stakeholders may occur with the Intuitive categorisation method. Stakeholder clusters based on literature-evidence show a high degree of common interests among clusters and is encouraging for those seeking to maximise dialogue and consensus forming. © 2013 Elsevier Ltd.
Resumo:
Side-channel analysis of cryptographic systems can allow for the recovery of secret information by an adversary even where the underlying algorithms have been shown to be provably secure. This is achieved by exploiting the unintentional leakages inherent in the underlying implementation of the algorithm in software or hardware. Within this field of research, a class of attacks known as profiling attacks, or more specifically as used here template attacks, have been shown to be extremely efficient at extracting secret keys. Template attacks assume a strong adversarial model, in that an attacker has an identical device with which to profile the power consumption of various operations. This can then be used to efficiently attack the target device. Inherent in this assumption is that the power consumption across the devices under test is somewhat similar. This central tenet of the attack is largely unexplored in the literature with the research community generally performing the profiling stage on the same device as being attacked. This is beneficial for evaluation or penetration testing as it is essentially the best case scenario for an attacker where the model built during the profiling stage matches exactly that of the target device, however it is not necessarily a reflection on how the attack will work in reality. In this work, a large scale evaluation of this assumption is performed, comparing the key recovery performance across 20 identical smart-cards when performing a profiling attack.