5 resultados para Moving kriging interpolation
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.
Resumo:
The mismatch between human capacity and the acquisition of Big Data such as Earth imagery undermines commitments to Convention on Biological Diversity (CBD) and Aichi targets. Artificial intelligence (AI) solutions to Big Data issues are urgently needed as these could prove to be faster, more accurate, and cheaper. Reducing costs of managing protected areas in remote deep waters and in the High Seas is of great importance, and this is a realm where autonomous technology will be transformative.
Resumo:
Edited book, with 12,000 word contributed authored chapter 'Crossing borders, changing times'
Resumo:
A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.