5 resultados para Model Testing
Resumo:
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
Resumo:
We propose a mechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center-of-mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoher- ence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the timescale of seconds, and that the free parameter λcsl which characterises the model ought to be testable to values as low as 10^{−12} Hz.
Resumo:
The application of custom classification techniques and posterior probability modeling (PPM) using Worldview-2 multispectral imagery to archaeological field survey is presented in this paper. Research is focused on the identification of Neolithic felsite stone tool workshops in the North Mavine region of the Shetland Islands in Northern Scotland. Sample data from known workshops surveyed using differential GPS are used alongside known non-sites to train a linear discriminant analysis (LDA) classifier based on a combination of datasets including Worldview-2 bands, band difference ratios (BDR) and topographical derivatives. Principal components analysis is further used to test and reduce dimensionality caused by redundant datasets. Probability models were generated by LDA using principal components and tested with sites identified through geological field survey. Testing shows the prospective ability of this technique and significance between 0.05 and 0.01, and gain statistics between 0.90 and 0.94, higher than those obtained using maximum likelihood and random forest classifiers. Results suggest that this approach is best suited to relatively homogenous site types, and performs better with correlated data sources. Finally, by combining posterior probability models and least-cost analysis, a survey least-cost efficacy model is generated showing the utility of such approaches to archaeological field survey.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
Testing the psychometric properties of Kidscreen-27 with Irish children of low socio-economic status
Resumo:
Background
Kidscreen-27 was developed as part of a cross-cultural European Union-funded project to standardise the measurement of children’s health-related quality of life. Yet, research has reported mixed evidence for the hypothesised 5-factor model, and no confirmatory factor analysis (CFA) has been conducted on the instrument with children of low socio-economic status (SES) across Ireland (Northern and Republic).
Method
The data for this study were collected as part of a clustered randomised controlled trial. A total of 663 (347 male, 315 female) 8–9-year-old children (M = 8.74, SD = .50) of low SES took part. A 5- and modified 7-factor CFA models were specified using the maximum likelihood estimation. A nested Chi-square difference test was conducted to compare the fit of the models. Internal consistency and floor and ceiling effects were also examined.
Results
CFA found that the hypothesised 5-factor model was an unacceptable fit. However, the modified 7-factor model was supported. A nested Chi-square difference test confirmed that the fit of the 7-factor model was significantly better than that of the 5-factor model. Internal consistency was unacceptable for just one scale. Ceiling effects were present in all but one of the factors.
Conclusions
Future research should apply the 7-factor model with children of low socio-economic status. Such efforts would help monitor the health status of the population.