75 resultados para Mild cognitive impairment, Dementia, Depression, n-3 Fatty acids, EPA, DHA
Resumo:
Introduction
Mild cognitive impairment (MCI) has clinical value in its ability to predict later dementia. A better understanding of cognitive profiles can further help delineate who is most at risk of conversion to dementia. We aimed to (1) examine to what extent the usual MCI subtyping using core criteria corresponds to empirically defined clusters of patients (latent profile analysis [LPA] of continuous neuropsychological data) and (2) compare the two methods of subtyping memory clinic participants in their prediction of conversion to dementia.
Methods
Memory clinic participants (MCI, n = 139) and age-matched controls (n = 98) were recruited. Participants had a full cognitive assessment, and results were grouped (1) according to traditional MCI subtypes and (2) using LPA. MCI participants were followed over approximately 2 years after their initial assessment to monitor for conversion to dementia.
Results
Groups were well matched for age and education. Controls performed significantly better than MCI participants on all cognitive measures. With the traditional analysis, most MCI participants were in the amnestic multidomain subgroup (46.8%) and this group was most at risk of conversion to dementia (63%). From the LPA, a three-profile solution fit the data best. Profile 3 was the largest group (40.3%), the most cognitively impaired, and most at risk of conversion to dementia (68% of the group).
Discussion
LPA provides a useful adjunct in delineating MCI participants most at risk of conversion to dementia and adds confidence to standard categories of clinical inference.
Resumo:
To design a new, highly sensitive psychometric screening to identify patients with mild cognitive impairment (MCI) and patients with dementia in the early stages of the disease.
Resumo:
Objectives: A healthy lifestyle may help maintain cognitive function and reduce the risk of developing dementia. This study employed a focus group approach in order to gain insight into opinions of mild cognitive impairment (MCI) patients, caregivers (CG) and health professionals (HP) regarding lifestyle and its relationship with cognition. The qualitative data were used to design, develop and pilot test educational material (EM) to help encourage lifestyle behaviour change. Method: Data gathering phase: structured interviews were conducted with HP (n = 10), and focus groups with MCI patients (n = 24) and CG (n = 12). EM was developed and pilot tested with a new group of MCI patients (n = 21) and CG (n = 6). Results: HP alluded to the lack of clinical trial evidence for a lifestyle and MCI risk link. Although they felt that lifestyle modifications should be recommended to MCI patients, they appeared hesitant in communicating this information and discussions were often patient-driven. MCI patients lacked awareness of the lifestyle cognition link. Participants preferred EM to be concise, eye-catching and in written format, with personal delivery of information favoured. Most pilot testers approved of the EM but were heterogeneous in terms of lifestyle, willingness to change and support needed to change. Conclusion: MCI patients need to be made more aware of the importance of lifestyle for cognition. EM such as those developed here, which are specifically tailored for this population would be valuable for HP who, currently, appear reticent in initiating lifestyle-related discussions. Following further evaluation, the EM could be used in health promotion activities targeting MCI patients.
Resumo:
This study combined high resolution mass spectrometry (HRMS), advanced chemometrics and pathway enrichment analysis to analyse the blood metabolome of patients attending the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon subsequent follow-up developed Alzheimer's disease (MCI_AD; n = 19), and healthy age-matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass spectrometer using a previously optimised method. Data comprising 6751 spectral features were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl, MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI patients who later went on to develop AD. S-plots were used to shortlist ions of interest which were responsible for explaining the maximum amount of variation between patient groups. Metabolite database searching and pathway enrichment analysis indicated disturbances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of metabolism (polyamine metabolism and L-Arginine metabolism) were differentially disrupted in this well-defined clinical cohort. The optimised untargeted HRMS methods described herein not only demonstrate that it is possible to distinguish these pathologies in human blood but also that MCI patients 'at risk' from AD could be predicted up to 2 years earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis and, refining clinical trials through better patient stratification.
Resumo:
Aim: Substantial evidence links atherosclerosis and Alzheimer's disease (AD). Apolipoproteins, such as apolipoprotein E, have a causal relationship with both diseases. The rs11136000 SNP within the CLU gene, which encodes clusterin (apolipoprotein J), is also associated with increased AD risk. The aim of this study was to investigate the relationship between plasma clusterin and the rs11136000 genotype in mild cognitive impairment (MCI) and AD.
Methods: Plasma and DNA samples were collected from control, MCI and AD subjects (n=142, 111, 154, respectively). Plasma clusterin was determined by ELISA and DNA samples were genotyped for rs11136000 by TaqMan assay.
Results: Plasma clusterin levels were higher in MCI and AD subjects vs. controls (222.3 +/- 61.3 and 193.6 +/- 58.2 vs. 178.6 +/- 52.3 mu g/ml, respectively; p
Conclusion: This study examined control, MCI and AD subjects, identifying for the first time that plasma clusterin levels were influenced, not only by the presence of AD, but also the transitional stage of MCI, while rs11136000 genotype only influenced plasma clusterin levels in the control group. The increase in plasma clusterin in MCI and AD subjects may occur in response to the disease process and would be predicted to increase binding capacity for amyloid-beta peptides in plasma, enhancing their removal from the brain.
Resumo:
The association fiber tracts integrity of the inter-hemispheric and within-hemispheric communication was poor understood in amnestic type mild cognitive impairment (aMCI) patients by diffusion tensor imaging (DTI). A region of interest-based DTI approach was applied to explore fiber tract differences between 22 aMCI patients and 22 well-matched normal aging. Correlations were also sought between fractional anisotropy (FA) values and the cognitive performance scores in the aMCI patients. Extensive impairment of association fiber tracts integrity was observed in aMCI patients, including bilateral inferior fronto-occipital fascicles, the genu of corpus callosum, bilateral cingulate bundles and bilateral superior longitudinal fascicles II (SLE II) subcomponent. In addition, the FA value of right SLE II was significantly negatively correlated to the performance of Trail Making Test A and B, whilst the values of right posterior cingulate bundle was significantly positive correlation with MMSE score. As aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), this study suggested that investigation of association fiber tracts between remote cortexes may yield important new data to predict whether a patient will eventually develop AD.
Resumo:
Hippocampus displayed progressively gender-associated damage in Alzheimer's disease. However, gender effects have been largely neglected in studies of amnestic type mild cognitive impairment (aMCI) patients who were believed to represent an early stage of this disease. The goal of this study was to use in vivo neuroimaging techniques to determine whether there were any evidences of gender differences in hippocampal atrophy in aMCI. A region of interest-based magnetic resonance imaging approach was used to compare hippocampal volume between aMCI patients (22 male, 17 female) and normal aging controls (12 male, 11 female). Independent of group, male hippocampal volumes were larger than female volumes and right hippocampal volumes were typically smaller than left volumes. Hippocampal volumes were significantly reduced in the clinical group but no gender differences were noted in terms of degree of atrophy present. However, female patients showed more impaired cognitive function than male patients despite this apparent equivalence in atrophy. The absence of a gender difference suggested that early neuropathological progression might be independent of gender. However, the data also suggested female aMCI patients had an increased vulnerability to cognitive impairment earlier in the illness course.
Resumo:
BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.
Abnormal white matter independent of hippocampal atrophy in amnestic type mild cognitive impairment.