18 resultados para Microsoft Kinect
Resumo:
Despite pattern recognition methods for human behavioral analysis has flourished in the last decade, animal behavioral analysis has been almost neglected. Those few approaches are mostly focused on preserving livestock economic value while attention on the welfare of companion animals, like dogs, is now emerging as a social need. In this work, following the analogy with human behavior recognition, we propose a system for recognizing body parts of dogs kept in pens. We decide to adopt both 2D and 3D features in order to obtain a rich description of the dog model. Images are acquired using the Microsoft Kinect to capture the depth map images of the dog. Upon depth maps a Structural Support Vector Machine (SSVM) is employed to identify the body parts using both 3D features and 2D images. The proposal relies on a kernelized discriminative structural classificator specifically tailored for dogs independently from the size and breed. The classification is performed in an online fashion using the LaRank optimization technique to obtaining real time performances. Promising results have emerged during the experimental evaluation carried out at a dog shelter, managed by IZSAM, in Teramo, Italy.
Resumo:
The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.
Resumo:
This paper presents a method for rational behaviour recognition that combines vision-based pose estimation with knowledge modeling and reasoning. The proposed method consists of two stages. First, RGB-D images are used in the estimation of the body postures. Then, estimated actions are evaluated to verify that they make sense. This method requires rational behaviour to be exhibited. To comply with this requirement, this work proposes a rational RGB-D dataset with two types of sequences, some for training and some for testing. Preliminary results show the addition of knowledge modeling and reasoning leads to a significant increase of recognition accuracy when compared to a system based only on computer vision.
Resumo:
Study conducted to evaluate the effectiveness of four assistive technology (AT) tools on literacy: (1) speech synthesis, (2) spellchecker, (3) homophone tool, and (4) dictionary. All four of these programs are featured in TextHelp’s Read&Write Gold software package. A total of 93 secondary-level students with reading disabilities participated in the study. The participants completed a number of computer-based literacy tests after being assigned to a Read&Write group or a control group that utilized Microsoft Word. The results indicated that improvements in the following areas for the Read&Write group: (1) reading comprehension, (2) homophone error detection, (3) spelling error detection, and (4) word meanings. The Microsoft Word group also improved in the areas of word meanings and error detection, though performed worse on homophone error detection. The authors contend that these results indicate that speech synthesis, spell checkers, homophone tools, and dictionary programs have a positive effect on literacy among students with reading disabilities. This study was conducted by researchers at the Queen’s University in Belfast, Ireland.
Resumo:
Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.
Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.
Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
Resumo:
Lipid peroxidation is a common feature of many chemical and biological processes, and is governed by a complex kinetic scheme. A fundamental stage in kinetic investigations of lipid peroxidation is the accurate determination of the rate of peroxidation, which in many instances is heavily reliant on the method of finite differences. Such numerical approximations of the first derivative are commonly employed in commercially available software, despite suffering from considerable inaccuracy due to rounding and truncation errors. As a simple solution to this, we applied three empirical sigmoid functions (viz. the Prout-Tompkins, Richards & Gompertz functions) to data obtained from the AAPH-mediated peroxidation of aqueous linoleate liposomes in the presence of increasing concentrations of Trolox, evaluating the curve fitting parameters using the widely available Microsoft Excel Solver add-in. We have demonstrated that the five-parameter Richards' function provides an excellent model for this peroxidation, and when applied to the determination of fundamental rate constants, produces results in keeping with those available in the literature. Overall, we present a series of equations, derived from the Richards' function, which enables direct evaluation of the kinetic measures of peroxidation. This procedure has applicability not only to investigations of lipid peroxidation, but to any system exhibiting sigmoid kinetics.
Resumo:
Restoration of joint centre during total hip arthroplasty is critical. While computer-aided navigation can improve accuracy during total hip arthroplasty, its expense makes it inaccessible to the majority of surgeons. This article evaluates the use, in the laboratory, of a calliper with a simple computer application to measure changes in femoral head centres during total hip arthroplasty. The computer application was designed using Microsoft Excel and used calliper measurements taken pre- and post-femoral head resection to predict the change in head centre in terms of offset and vertical height between the femoral head and newly inserted prosthesis. Its accuracy was assessed using a coordinate measuring machine to compare changes in preoperative and post-operative head centre when simulating stem insertion on 10 sawbone femurs. A femoral stem with a modular neck was used, which meant nine possible head centre configurations were available for each femur, giving 90 results. The results show that using this technique during a simulated total hip arthroplasty, it was possible to restore femoral head centre to within 6?mm for offset (mean 1.67?±?1.16?mm) and vertical height (mean 2.14?±?1.51?mm). It is intended that this low-cost technique be extended to inform the surgeon of a best-fit solution in terms of neck length and neck type for a specific prosthesis.
Resumo:
We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year as a function of the post-disruption increase in brightness (Δm) and subsequent brightness decay rate (τ ). The confidence limits were calculated using the brightest unknown main belt asteroid (V=18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1’s catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event’s photometric behavior in a small aperture centered on the catastrophic disruption event. We then calculated the contours in the ranges from and encompassing measured values from known cratering and disruption events and our model’s predictions. Our simplistic catastrophic disruption model suggests that and which would imply that H0≳28—strongly inconsistent withH0,B2005=23.26±0.02 predicted by Bottke et al. (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F. [2005]. Icarus, 179, 63–94.) using purely collisional models. However, if we assume that H0=H0,B2005 our results constrain , inconsistent with our simplistic impact-generated catastrophic disruption model. We postulate that the solution to the discrepancy is that >99% of main belt catastrophic disruptions in the size range to which this study was sensitive (∼100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V=18.5.
Resumo:
At the formation of the new Republic of Ireland, the construction of new infrastructures was seen as an essential element in the building of the new nation, just as the adoption of international style modernism in architecture was perceived as a way to escape the colonial past. Accordingly, infrastructure became the physical manifestation, the concrete identity of these objectives and architecture formed an integral part of this narrative. Moving between scales and from artefact to context, Infrastructure and the Architectures of Modernity in Ireland 1916-2016 provides critical insights and narratives on what is a complex and hitherto overlooked landscape, one which is often as much international as it is Irish. In doing so, it explores the interaction between the universalising and globalising tendencies of modernisation on one hand and the textures of local architectures on the other.
The book shows how the nature of technology and infrastructure is inherently cosmopolitan. Beginning with the building of the heroic Shannon hydro-electric facility at Ardnacrusha by the German firm of Siemens-Schuckert in the first decade of independence, Ireland became a point of varying types of intersection between imported international expertise and local need. Meanwhile, at the other end of the century, by the year 2000, Ireland had become one of the most globalized countries in the world, site of the European headquarters of multinationals such as Google and Microsoft. Climatically and economically expedient to the storing and harvesting of data, Ireland has subsequently become a repository of digital information farmed in large, single-storey sheds absorbed into anonymous suburbs. In 2013, it became the preferred site for Intel to design and develop its new microprocessor chip: the Galileo. The story of the decades in between, of shifts made manifest in architecture and infrastructure from the policies of economic protectionism, to the opening up of the country to direct foreign investment and the embracing of the EU, is one of the influx of technologies and cultural references into a small country on the edges of Europe as Ireland became both a launch-pad and testing ground for a series of aspects of designed modernity.
Resumo:
Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs () across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.
Resumo:
Objective
Global migration of healthcare workers places responsibility on employers to comply with legal employment rights whilst ensuring patient safety remains the central goal. We describe the pilot of a communication assessment designed for doctors who trained and communicated with patients and colleagues in a different language from that of the host country. It is unique in assessing clinical communication without assessing knowledge.
MethodsA 14-station OSCE was developed using a domain-based marking scheme, covering professional communication and English language skills (speaking, listening, reading and writing) in routine, acute and emotionally challenging contexts, with patients, carers and healthcare teams. Candidates (n = 43), non-UK trained volunteers applying to the UK Foundation Programme, were provided with relevant station information prior to the exam.
ResultsThe criteria for passing the test included achieving the pass score and passing 10 or more of the 14 stations. Of the 43 candidates, nine failed on the station criteria. Two failed the pass score and also the station criteria. The Cronbach's alpha coefficient was 0.866.
ConclusionThis pilot tested ‘proof of concept’ of a new domain-based communication assessment for non-UK trained doctors.
Practice implicationsThe test would enable employers and regulators to verify communication competence and safety in clinical contexts, independent of clinical knowledge, for doctors who trained in a language different from that of the host country.
Resumo:
After an open competition, we were selected to commission, curate and design the Irish pavilion for the Venice biennale 2014. Our proposal engage with the role of infrastructure and architecture in the cultural development of the new Irish state 1914-2014. This curatorial programme was realised in a demountable, open matrix pavilion measuring 12 x 5 x 6 metres.
How modernity is absorbed into national cultures usually presupposes an attachment to previous conditions and a desire to reconcile the two. In an Irish context, due to the processes of de-colonisation and political independence, this relationship is more complicated.
In 1914, Ireland was largely agricultural and lacked any significant industrial complex. The construction of new infrastructures after independence in 1921 became central to the cultural imagining of the new nation. The adoption of modernist architecture was perceived as a way to escape the colonial past. As the desire to reconcile cultural and technological aims developed, these infrastructures became both the physical manifestation and concrete identity of the new nation with architecture an essential element in this construct.
Technology and infrastructure are inherently cosmopolitan. Beginning with the Shannon hydro-electric facility at Ardnacrusha (1929) involving the German firm of Siemens-Schuckert, Ireland became a point of various intersections between imported international expertise and local need. By the turn of the last century, it had become one of the most globalised countries in the world, site of the European headquarters of multinationals such as Google and Microsoft. Climatically and economically expedient to the storing and harvesting of data, Ireland has subsequently become an important repository of digital information farmed in large, single-storey sheds absorbed into dispersed suburbs. In 2013, it became the preferred site for Intel to design and develop its new microprocessor board, the Galileo, a building block for the internet of things.
The story of the decades in between, of shifts made manifest in architecture and infrastructure, from the policies of economic protectionism to the embracing of the EU is one of the influx of technologies and cultural references into a small country on the edges of Europe: Ireland as both a launch-pad and testing ground for a series of aspects of designed modernity.
Resumo:
This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.