2 resultados para Melamine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.