62 resultados para Mediator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine 5′-monophosphate (AMP) has been shown to cause bronchoconstriction in atopic subjects but to have no effect on nonatopic nonasthmatic subjects. Endobronchial AMP challenge has previously been shown to cause mast cell mediator release in asthmatic subjects, but it is unknown whether a similar response occurs in atopic nonasthmatic and nonatopic nonasthmatic control subjects who have no response to inhalation AMP challenge.

Objective: This study examined the change in mast cell–derived products after endobronchial saline challenge and AMP challenge in subjects with and without a positive inhalation response to AMP.

Methods: Inhalation challenge with AMP challenge was performed in normal, atopic nonasthmatic, and atopic asthmatic subjects. Levels of mast cell mediators were measured after endobronchial adenosine challenge and after placebo endobronchial saline challenge.

Results: There were significant increases in histamine, tryptase, protein, and prostaglandin D2 levels (P = .02, P = .02, P = .01, and P = .01, respectively) after AMP challenge compared with after saline challenge in nonatopic nonasthmatic subjects. There was no significant increase in any mediator in either of the other 2 groups.

Conclusion: This study suggests dissociation between mediator release and bronchoconstriction in response to AMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) is synthesized in the body from L-Cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 mu M to 40.9 +/- 0.6 mu M (n=6, P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine > cysteinyl-LT > PGI2 > LTB4 > PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H-1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic options for malignant pleural mesothelioma (MPM) are limited despite the increasing incidence globally. The vinca alkaloid vinorelbine exhibits clinical activity; however, to date, treatment optimization has not been achieved using biomarkers. BRCA1 regulates sensitivity to microtubule poisons; however, its role in regulating vinorelbine-induced apoptosis in mesothelioma is unknown. Here we demonstrate that BRCA1 plays an essential role in mediating vinorelbine-induced apoptosis, as evidenced by (1) the strong correlation between vinorelbine sensitivity and BRCA1 expression level; (2) induction of resistance to vinorelbine by BRCA1 using siRNA oligonucleotides; (3) dramatic down-regulation of BRCA1 following selection for vinorelbine resistance; and (4) the re-activation of vinorelbine-induced apoptosis following re-expression of BRCA1 in resistant cells. To determine whether loss of BRCA1 expression in mesothelioma was potentially relevant in vivo, BRCA1 immunohistochemistry was subsequently performed on 144 primary mesothelioma specimens. Loss of BRCA1 protein expression was identified in 38.9% of samples. Together, these data suggest that BRCA1 plays a critical role in mediating apoptosis by vinorelbine in mesothelioma, warranting its clinical evaluation as a predictive biomarker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 mediates resistance to apoptosis in response to DNA-damaging agents, causing BRCA1 wild-type tumours to be significantly more resistant to DNA damage than their mutant counterparts. In this study, we demonstrate that following treatment with the DNA-damaging agents, etoposide or camptothecin, BRCA1 is required for the activation of nuclear factor-?B (NF-?B), and that BRCA1 and NF-?B cooperate to regulate the expression of the NF-?B antiapoptotic targets BCL2 and XIAP. We show that BRCA1 and the NF-?B subunit p65/RelA associate constitutively, whereas the p50 NF-?B subunit associates with BRCA1 only upon DNA damage treatment. Consistent with this BRCA1 and p65 are present constitutively on the promoters of BCL2 and XIAP, whereas p50 is recruited to these promoters only in damage treated cells. Importantly, we demonstrate that the recruitment of p50 onto the promoters of BCL2 and XIAP is dependent upon BRCA1, but independent of its NF-?B partner subunit p65. The functional relevance of NF-?B activation by BRCA1 in response to etoposide and camptothecin is demonstrated by the significantly reduced survival of BRCA1 wild-type cells upon NF-?B inhibition. This study identifies a novel BRCA1-p50 complex, and demonstrates for the first time that NF-?B is required for BRCA1-mediated resistance to DNA damage. It reveals a functional interdependence between BRCA1 and NF-?B, further elucidating the role played by NF-?B in mediating cellular resistance of BRCA1 wild-type tumours to DNA-damaging agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laccase-mediator systems have numerous potential uses for green oxidations, but their practical use may be limited because the reactive, oxidised mediators deactivate the enzyme. TEMPO, 4-hydroxybenzyl alcohol, phenothiazine and 2-hydroxybiphenyl caused almost complete deactivation of laccase from Trametes versicolor within 24-140 h. By contrast, 18% activity was retained after 188 h in controls without mediator, and 15% in the presence of ABTS. A biphasic reaction system was developed to protect the laccase, by partitioning the mediator into water-immiscible ionic liquids. In the presence of [C mim][AOT], laccase retained 54, 35, 35 and 41% activity after 188 h in the presence of 4-hydroxybenzyl alcohol, phenothiazine and 2-hydroxybiphenyl and ABTS, respectively, whilst 30% activity was retained in the presence of [N][Sac] and TEMPO. The protection against deactivation by the mediators correlated strongly with the distribution coefficients of the mediators between ionic liquids and water. © 2014 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have evaluated the role played by BRCA1 in mediating the phenotypic response to a range of chemotherapeutic agents commonly used in cancer treatment. Here we provide evidence that BRCA1 functions as a differential mediator of chemotherapy-induced apoptosis. Specifically, we demonstrate that BRCA1 mediates sensitivity to apoptosis induced by antimicrotubule agents but conversely induces resistance to DNA-damaging agents. These data are supported by a variety of experimental models including cells with inducible expression of BRCA1, siRNA-mediated inactivation of endogenous BRCA1, and reconstitution of BRCA1-deficient cells with wild-type BRCA1. Most notably we demonstrate that BRCA1 induces a 10–1000-fold increase in resistance to a range of DNA-damaging agents, in particular those that give rise to double-strand breaks such as etoposide or bleomycin. In contrast, BRCA1 induces a >1000-fold increase in sensitivity to the spindle poisons, paclitaxel and vinorelbine. Fluorescence-activated cell sorter analysis demonstrated that BRCA1 mediates G2/M arrest in response to both antimicrotubule and DNA-damaging agents. However, poly(ADP-ribose) polymerase and caspase-3 cleavage assays indicate that the differential effect mediated by BRCA1 in response to these agents occurs through the inhibition or induction of apoptosis. Therefore, our data suggest that BRCA1 acts as a differential modulator of apoptosis depending on the nature of the cellular insult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) is a member of the tumor necrosis factor receptor family. Receptor binding results in activation of caspase 8, leading to activation of proapoptotic downstream molecules. We found that expression of Fas was up-regulated >10-fold in MCF-7 breast and HCT116 and RKO colon cancer cell lines after treatment with IC(60) doses of 5-fluorouracil (5-FU) and raltitrexed (RTX). Combined treatment with the agonistic Fas antibody CH-11 and either 5-FU or RTX resulted in a highly synergistic induction of apoptosis in these cell lines. Similar results were obtained for another antifolate, Alimta. Induction of thymidylate synthase expression inhibited Fas induction in response to RTX and Alimta, but not in response to 5-FU. Furthermore, thymidylate synthase induction abrogated the synergy between CH-11 and both antifolates but had no effect on the synergistic interaction between 5-FU and CH-11. Inactivation of p53 in MCF-7 and HCT116 cell lines blocked 5-FU- and antifolate-mediated up-regulation of Fas. Furthermore, Fas was not up-regulated in response to 5-FU or antifolates in the p53-mutant H630 colon cancer cell line. Lack of Fas up-regulation in the p53-null and -mutant lines abolished the synergistic interaction between 5-FU and CH-11. Interestingly, synergy was still observed between the antifolates and CH-11 in the p53-null HCT116 and p53-mutant H630 cell lines, although this was significantly reduced compared with the p53 wild-type cell lines. Our results indicate that Fas is an important mediator of apoptosis in response to both 5-FU and antifolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factor E1AF is widely known to play critical roles in tumor metastasis via directly binding to the promoters of genes involved in tumor migration and invasion. Here, we report for the first time E1AF as a novel binding partner for ubiquitously expressed Sp1 transcription factor. E1AF forms a complex with Sp1, contributes to Sp1 phosphorylation and transcriptional activity, and functions as a mediator between epidermal growth factor and Sp1 phosphorylation and activity. Sp1 functions as a carrier bringing E1AF to the promoter region, thus activating transcription of glioma-related gene for beta1,4-galactosyltransferase V (GalT V; EC 2.4.1.38). Biologically, E1AF functions as a positive invasion regulator in glioma in cooperation with Sp1 partly via up-regulation of GalT V. This report describes a new mechanism of glioma invasion involving a cooperative effort between E1AF and Sp1 transcription factors.