15 resultados para Maturação da uva
Resumo:
TiO2 photocatalysis has demonstrated efficacy as a treatment process for water contaminated with chemical pollutants. When exposed to UVA light TiO2 also demonstrates an effective bactericidal activity. The mechanism of this process has been reported to involve attack by valence band generated hydroxyl radicals. In this study when three common bacterial pathogens, Escherichia coli, Salmonella enterica serovar Enteritidis and Pseudomonas aeruginosa, were exposed to TiO2 and UVA light a substantial decrease in bacterial numbers was observed. Control experiments in which all three pathogens were exposed to UVA light only resulted in a similar reduction in bacterial numbers. Moreover, exposure to UVA light alone resulted in the production of a smaller than average colony phenotype among the surviving bacteria, for all three pathogens examined, a finding which was not observed following treatment with UVA and TiO2. Small slow growing colonies have been described for several pathogenic bacteria and are referred to as small colony variants. Several studies have demonstrated an association between small colony variants and persistent, recurrent and antibiotic resistant infections. We propose that the production of small colony variants of pathogenic bacteria following UVA treatment of drinking water may represent a health hazard. As these small colony variants were not observed with the UVA/TiO2 system this potential hazard is not a risk when using this technology. It would also appear that the bactericidal mechanism is different with the UVA/TiO2 process compared to when UVA light is used alone.
Resumo:
Fibroblast activation protein-a (FAP-a) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-a is unknown. We examined the effect of UVR on FAP-a expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-a in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-a negative. UVA and UVB stimulated FAP-a-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-a in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-a in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-a expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-ß1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-a/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-a/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-a expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-a expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-ß1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-a activity and prevent early melanoma dissemination.
Resumo:
The preparation and characterisation of a novel, UV-activated, solvent-based, colourimetric indicator for oxygen is described, comprising a redox dye (methylene blue, MB), semiconductor photocatalyst (Pt-TiO2), and a sacrificial electron donor (SED = glycerol), all dispersed/dissolved in a polymer medium (sulfonated polystyrene. SPS). Upon exposure to UVA light, the Pt-TiO2/MB/glycerol/SPS oxygen indicator is readily photobleached as the MB is converted into its oxygen-sensitive, leuco form, LMB. In contrast to its non-platinised TiO2 counterpart (TiO2/MB/glycerol/SPS oxygen indicator), the recovery of the original colour is faster (ca. 1.5 days cf. 5 days at 21 degrees C). This is due to the catalytic action of the 0.38 wt% platinum loaded onto the semiconductor photocatalyst. TiO2, on the oxidation of the photogenerated LMB by ambient O-2. Furthermore, by increasing the level of platinum loading, recovery times can be decreased further; e.g. a Pt-TiO2/MB/glycerol/SPS oxygen indicator with platinum level of 1.52 wt% recovers fully within 12 h. A study of the kinetics of recovery as a function of film thickness revealed the recovery step is not controlled by the diffusion of O-2 through the film, but instead dependent upon the slow rate of oxidation of LMB to MB by O-2 in the low dielectric polymer encapsulation medium. Other work showed this recovery is only moderately dependant upon temperatures above -10 degrees C and very sensitive to relative humidity above 30% RH. Potential uses of this UV light activated indicator are discussed briefly. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.
Resumo:
An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.
Resumo:
A controlled-atmosphere chamber, combined with a CCTV system, is used to monitor continuously the change in shape of water droplets on the self-cleaning commercial glass, Activ, and a sol-gel TiO2 substrate during their irradiation with either UVA or UVC light. This system allows the photoinduced superhydrophilic effect (PSH) exhibited by these materials to be studied in real time under a variety of different conditions. UVA was less effective than UVC in terms of PSH for both titania-coated glasses, and plain glass was unaffected by either form of UV irradiation and so showed no PSH activity. With UVA, ozone increased significantly the rate of PSH for both substrates, but had no effect on the wettability of plain glass. For both titania substrates and plain glass, no PSH activity was observed under an O-2-free atmosphere. A more detailed study of the PSH effect exhibited by Activ revealed that doping the water droplet with either an electron acceptor (Na2S2O8), electron donor (Na2S2O4), or simple electrolyte (KCl) in the absence of oxygen did not promote PSH. However, when Activ was UV irradiated, while immersed in a deoxygenated KCl solution, prior to testing for PSH activity, only a small change in contact angle was observed, whereas under the same conditions, but using a deoxygenated persulfate-containing immersion solution, it was rendered superhydrophilic. The correlation between organic contaminant removal and surface wetting was also investigated by using thick sol-gel films coated with stearic acid; the destruction of SA was monitored by FTIR and sudden wetting of the surface was seen to coincide with the substantial removal of the organic layer. The results of this work are discussed in the context of the current debate on the underlying cause of PSH.
Resumo:
Thick (4 mu m) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, similar to 2.8 mu m, thick and under moderate illumination conditions (I = 5.6 mW cm(-2)) on the open bench the process is complete within similar to 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is similar to 0.16%, which is much higher (> 15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.
Resumo:
The photomineralisation of soot by P25 titania films is studied using FT-IR and the process shown to involve the oxidation of carbon to CO2 exclusively. The efficiency of this process is low, however, with a formal quantum efficiency of 1.1 X 10(-4) molecules of carbon oxidized per incident photon of UVA light. The cause of this low efficiency is attributed largely to the less than intimate contact between the fibrous soot layer and the surface of the photocatalyst. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The results of a detailed characterization study of a novel UV-activated colorimetric oxygen indicator are described. The indicator uses nanoparticles of titania to photosensitize the reduction of methylene blue by triethanolamine in a polymer encapsulation medium, using UVA light. Upon UV irradiation, the indicator bleaches and remains in this colorless state in the dark, unless and until it is exposed to oxygen, whereupon its original color is restored. The indicator is reusable and irreversible. The rate of color recovery is proportional to the level of oxygen present. A layer of PET (poly(ethylene terephthalate)), of thickness b, placed on top of the indicator film slows down its response, and the 90% recovery time is proportional to b.
Resumo:
High levels of ozone (typically 850 ppm) are readily decomposed by semiconductor photocatalysis, using a thin film of the semiconductor titanium dioxide (Degussa P25 TiO2) cast on a glass tube, and UVA light, i.e. light of energy greater than that of the bandgap of the semiconductor (ultra-bandgap light); in the absence of this light the thermal decomposition of ozone is relatively slow. The semiconductor films show no evidence of chemical or photochemical wear with repeated use. At high levels of ozone, i.e. 100 ppm less than or equal to [O-3] less than or equal to 1400 ppm, the initial rate of ozone decomposition by semiconductor photocatalysis is independent of [O-3], whereas, at lower ozone concentrations, i.e. 5 ppm less than or equal to [O-3] less than or equal to 100 ppm, the initial rate of ozone photodestruction decreases in a smooth, but non-linear, manner with decreasing [O-3]. The kinetics of ozone photodecomposition fit a Langmuir-Hinshelwood type kinetic equation and the possible mechanistic implications of these results are briefly discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The use of an acid violet 7 (AV7) smart ink to assess the activity of photocatalytic paint is demonstrated. A linear correlation is established between the change in oxidized dye concentration, as measured by diffuse reflectance, and the change in the green component of the RGB color values, obtained using a portable hand-held scanner, suggesting that such tests can be monitored easily using an inexpensive piece of hand-held office equipment, as opposed to an expensive lab-based instrument, such as a diffuse reflectance UV/vis spectrophotometer. The bleaching of the AV7 follows first order kinetics, at a rate that is linearly dependent upon the UVA irradiance (0.30–3.26 mW cm–2). A comparison of relative rate of bleaching of the AV7 ink with the relative rate of removal of NOx, as determined using the ISO test (ISO 22197-1:2007), established a linear relationship between the two sets of results and the relevance of this correlation is discussed briefly.
Resumo:
The photonic efficiencies of films of Evonik (formerly Degussa) P25 TiO2 and carbon-modified TiO2 Kronos VLP 7000 samples are reported as a function of excitation wavelength (300–430 nm; FWHM ∼ 7.5 nm), i.e. the action spectra, for the degradation of stearic acid, a model organic for the photocatalytic destruction of solid surface organic pollutants. For each of these semiconductor photocatalysts, at 365 nm (FWHM = 18 nm), the dependence of the rate of degradation of stearic acid, upon the irradiance, I, is determined and the rate is found to be proportional to I0.65 and I0.82 for P25 and Kronos titania, respectively. Assuming this relationship holds at all wavelengths, the action spectra for two different semiconductor photocatalysts is modified by plotting, (RSA (rate of stearic acid destruction, units: molecules cm−2 s−1)/Iθ) vs. wavelength of excitation (λexcit), and both differ noticeably from those of the original (unmodified) action spectra, which are plots of (RSA/I = photonic efficiency, ξ) vs. λexcit. The shape of the modified action spectrum for P25 TiO2 is consistent with that reported by others for other organic mineralisation reactions and correlates well with diffuse reflectance data for P25 TiO2 (Kubelka–Munk plot), although there is some evidence that the active phase, in the photodegradation of stearic acid, is the anatase form present in P25. The unmodified and modified action spectra of the beige Kronos VLP 7000 TiO2 compound exhibits little or no activity in the visible i.e. (λexcit > 400 nm) and a peak at 350 nm. The Kronos powder contains a yellow/brown conjugated, extractable, organic sensitiser which has been identified by others as the species responsible for its reported photocatalytic visible light activity. But, irradiation of the Kronos powder film, with and without a stearic acid coating, in air, using UVA or visible light, bleaches rapidly (<60 min) most, if not all, of the little colour exhibited by the original Kronos powder. The photobleached form of the Kronos has a similar action spectrum to that of the unbleached form, which, in turn, appears very similar to that of P25 titania, at wavelengths >350 nm. It is proposed that the difference between the Kronos and P25 powder films at wavelengths <350 nm is due to a photodegradation-resistant, previously unidentified (but extractable using MeCN) UV-absorbing organic species in the former which screens the titania particles at these lower wavelengths. The implications of these observations are discussed briefly.
Resumo:
Suitably functionalised carboxylic acids undergo a previously unknown photoredox reaction when irradiated with UVA in the presence of maleimide. Maleimide was found to synergistically act as a radical generating photoxidant and as a radical acceptor, negating the need for an extrinsic photoredox catalyst. Modest to excellent yields of the product chromenopyrroledione, thiochromenopyrroledione and pyrroloquinolinedione derivatives were obtained in thirteen preparative photolyses. In situ NMR spectroscopy was used to study each reaction. Reactant decay and product build-up were monitored, enabling reaction profiles to be plotted. A plausible mechanism, whereby photo-excited maleimide acts as an oxidant to generate a radical ion pair, has been postulated and is supported by UV/Vis. spectroscopy and DFT computations. The radical-cation reactive intermediates were also characterised in solution by EPR spectroscopy.