184 resultados para Mathematical skills


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Organisation for Economic Co-operation and Development investigated numeracy proficiency among adults of working age in 23 countries across the world. Finland had the highest mean numeracy proficiency for people in the 16 – 24 age group while Northern Ireland’s score was below the mean for all the countries. An international collaboration has been undertaken to investigate the prevalence of mathematics within the secondary education systems in Northern Ireland and Finland, to highlight particular issues associated with transition into university and consider whether aspects of the Finnish experience are applicable elsewhere. In both Northern Ireland and Finland, at age 16, about half of school students continue into upper secondary level following their compulsory education. The upper secondary curriculum in Northern Ireland involves a focus on three subjects while Finnish students study a very wide range of subjects with about two-thirds of the courses being compulsory. The number of compulsory courses in maths is proportionally large; this means that all upper secondary pupils in Finland (about 55% of the population) follow a curriculum which has a formal maths content of 8%, at the very minimum. In contrast, recent data have indicated that only about 13% of Northern Ireland school leavers studied mathematics in upper secondary school. The compulsory courses of the advanced maths syllabus in Finland are largely composed of pure maths with a small amount of statistics but no mechanics. They lack some topics (for example, in advanced calculus and numerical methods for integration) which are core in Northern Ireland. This is not surprising given the much broader curriculum within upper secondary education in Finland. In both countries, there is a wide variation in the mathematical skills of school leavers. However, given the prevalence of maths within upper secondary education in Finland, it is to be expected that young adults in that country demonstrate high numeracy proficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many concerns have been expressed that students’ basic mathematical skills have deteriorated during the 1990s and there has been disquiet that current A-level grading does not distinguish adequately between the more able students. This study reports the author’s experiences of teaching maths to large classes of first-year engineering students and aims to enhance understanding of levels of mathematical competence in more recent years. Over the last four years, the classes have consisted of a very large proportion of highly qualified students – about 91% of them had at least grade B in A-level Mathematics. With a small group of students having followed a non-traditional route to university (no A-level maths) and another group having benefitted through taking A-level Further Mathematics at school, the classes have contained a very wide range of mathematical backgrounds. Despite the introductory maths course at university involving mainly repetition of A-level material, students’ marks were spread over a very wide range – for example, A-level Mathematics grade B students have scored across the range 16 – 97%. Analytical integration is the topic which produced the largest variation in performance across the class but, in contrast, the A-level students generally performed well in differentiation. Initial analysis suggests some stability in recent years in the mathematical proficiency of students with a particular A-level Mathematics grade. Allowing choice of applied maths modules as part of the A-level maths qualification increases the variety of students’ mathematical backgrounds and their selection from mechanics, statistics or decision maths is not clear from the final qualification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study sought to extend earlier work by Mulhern and Wylie (2004) to investigate a UK-wide sample of psychology undergraduates. A total of 890 participants from eight universities across the UK were tested on six broadly defined components of mathematical thinking relevant to the teaching of statistics in psychology - calculation, algebraic reasoning, graphical interpretation, proportionality and ratio, probability and sampling, and estimation. Results were consistent with Mulhern and Wylie's (2004) previously reported findings. Overall, participants across institutions exhibited marked deficiencies in many aspects of mathematical thinking. Results also revealed significant gender differences on calculation, proportionality and ratio, and estimation. Level of qualification in mathematics was found to predict overall performance. Analysis of the nature and content of errors revealed consistent patterns of misconceptions in core mathematical knowledge , likely to hamper the learning of statistics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In response to claims that the quality (and in particular linearity) of children's mental representation of number acts as a constraint on number development, we carried out a longitudinal assessment of the relationships between number line estimation, counting, and mathematical abilities. Ninety-nine 5-year-olds were tested on 4 occasions at 3 monthly intervals. Correlations between the 3 types of ability were evident, but while the quality of children's estimations changed over time and performance on the mathematical tasks improved over the same period, changes in one were not associated with changes in the other. In contrast to the earlier claims that the linearity of number representation is potentially a unique contributor to children's mathematical development, the data suggest that this variable is not significantly privileged in its impact over and above simple procedural number skills. We propose that both early arithmetic success and estimating skill are bound closely to developments in counting ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents some observations on how computer animation was used in the early years of a degree program in Electrical and Electronic Engineering to enhance the teaching of key skills and professional practice. This paper presents the results from two case studies. First, in a first year course which seeks to teach students how to manage and report on group projects in a professional way. Secondly, in a technical course on virtual reality, where the students are asked to use computer animation in a way that subliminally coerces them to come to terms with the fine detail of the mathematical principles that underlie 3D graphics, geometry, etc. as well as the most significant principles of computer architecture and software engineering. In addition, the findings reveal that by including a significant element of self and peer review processes into the assessment procedure students became more engaged with the course and achieved a deeper level of comprehension of the material in the course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.