7 resultados para Mass gain
Resumo:
Investigations are carried out into the mass gain behaviour of fired clay ceramics following drying (130°C) and reheating (500°C), and the application of these mass gain properties to the dating of archaeological ceramics using a modified rehydroxylation dating (RHX) methodology, a component based approach. Gravimetric analysis is conducted using a temperature and humidity controlled glove box arrangement (featuring a top-loading balance) on eighteen samples of varied known ages and contexts; this occurs following transfer from environmentally controlled chambers where subsamples of these samples are aged at three temperatures (25°C, 35°C, 45°C) following drying and reheating. The sample set consists principally of post-medieval bricks, but also includes some post-medieval pottery as well as both Etruscan and Roman ceramics. A suite of techniques are applied to characterise these ceramics, including XRD, FTIR, p-XRF, thin-section petrography, BET analysis, TG-MS and permeametry.
Resumo:
Objectives. We investigated whether exposure to negative aspects of close relationships was associated with subsequent increase in body mass index (BMI) and waist circumference.
Methods. Data came from a prospective cohort study (Whitehall II) of 9425 civil servants aged 35 to 55 years at baseline (phase 1: 1985-1988). We assessed negative aspects of close relationships with the Close Persons Questionnaire (range 0-12) at phases 1 and 2 (1989-1990). We measured BMI and waist circumference at phases 3 (1991-1994) and 5 (1997-1999). Covariates at phase 1 included gender, age, marital status, ethnicity, BMI, employment grade, smoking, physical activity, fruit and vegetable consumption, and common mental disorder.
Results. After adjustment for sociodemographic characteristics and health behaviors, participants with higher exposure to negative aspects of close relationships had a higher likelihood of a 10% or greater increase in BMI and waist circumference (odds ratios per 1-unit increase 1.08 [95% confidence interval (CI)=1.02, 1.14; P=.007] and 1.09 [CI=1.04, 1.14; P <= .001], respectively) as well as a transition from the overweight (25 <= BMI <30) to the obese (BMI >= 30) category.
Conclusions. Adverse social relationships may contribute to weight gain.
Resumo:
Objective: The proportion of overweight and obese people has grown rapidly, and obesity has now been widely recognized as an important public health problem. At the came time, stress has increased in working life. The 2 problems could be connected if work stress promotes unhealthy eating habits and sedentary behavior and thereby contributes to weight gain. This study explored the association between work stress and body mass index (BMI; kg/m(2)). Methods: We used cross-sectional questionnaire data obtained from 45,810 female and male employees participating in the ongoing Finnish Public Sector Cohort Study. We constructed individual-level scores, as well as occupational- and organizational-level aggregated scores for work stress, as indicated by the demand/control model and the effort-reward imbalance model. Linear regression analyses were stratified by sex and socioeconomic status (SES) and adjusted for age, marital status, job contract, smoking, alcohol consumption, physical activity, and negative affectivity. Results: The results with the aggregated scores showed that lower job control, higher job strain, and higher effort-reward imbalance were associated with a higher BMI. In men, lower job demands were also associated with a higher BMI. These associations were not accounted for by SES, although an additional adjustment for SES attenuated the associations. The results obtained with the individual-level scores were in the same direction, but the relationships were weaker than those obtained with the aggregated scores. Conclusions: This study shows a weak association between work stress and BMI.