84 resultados para Marie Louise, Empress, consort of Napoleon I, Emperor of the French, 1791-1847.
Resumo:
An analogue of the bisphosphonate drug Ibandronate was prepared and coupled via a cleavable ester function to a bromoacetyl linker with specific reactivity for thiol groups. This compound should find useful applications in therapeutic strategies aiming to deliver bisphosphonate drugs specifically to cancer cells making use of proteins as vectors. The specific delivery of bisphosphonates to cancer cells instead of bone, the usual site of accumulation of these cytotoxic drugs, could greatly widen their therapeutic applications.
Resumo:
The shallow water kelp Laminaria digitata, abundant in coastal zones of the North Atlantic, is exposed to a range of hydrodynamic environments that makes it ideal for assessing the role of water motion on their growth rate. Here we quantify the growth of L. digitata, as a factor of blade and stipe elongation, at sites adjacent to Strangford Lough, Northern Ireland under different hydrodynamic conditions over a one year period. A modelling approach was used to numerically determine both the temporal and spatial variability of the hydrodynamic environment. Ambient seawater nutrient concentrations, temperature and irradiance were measured as well as the internal nutrient status of the L. digitata populations. Kelp populations growing in the greatest and lowest water motion showed the lowest growth rates. Differences observed in growth rate could not be attributed to seawater nutrient availability, temperature or light. The internal nutrient status also suggested no influence on the observed differences in growth rate. Therefore if there are minimal differences in light, temperature and nutrients between sites, then populations of L. digitata exposed to different water motions are likely to exhibit different growth rates. It is suggested that the growth rate differences observed were a function of water motion with the possibility that, in response to the hydrodynamic forces experienced by the algal cells, L. digitata kelps in the high energy environments were putting more energy into strengthening cell walls rather than blade elongation
Resumo:
Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2–3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128 000 bp and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20 000 bp) in the Hurd Deep, an enigmatic trench in the English Channel.
Resumo:
Peat bogs represent unique ecosystems that are under particular threat from fragmentation due to peat harvesting, with only 38% of the original peatland in Europe remaining intact and unaffected by peat cutting, drainage and silviculture. In this study, we have used microsatellite markers to determine levels and patterns of genetic diversity in both cut and uncut natural populations of the peat moss Polytrichum commune. Overall diversity levels suggest that there is more genetic variation present than had previously been assumed for bryophytes. Despite this, diversity values from completely cut bogs were found to be lower than those from uncut peatlands (average 0.729 versus 0.880). In addition, the genetic diversity was more highly structured in the cut populations, further suggesting that genetic drift is already affecting genetic diversity in peat bogs subjected to fragmentation.
Resumo:
The Rhodophyceae (red algae) are an established source of volatile halocarbons in the marine environment. Some species in the Bonnemaisoniaceae have been reported to contain large amounts of halogens in structures referred to as vesicle cells, suggesting involvement of these specialised cells in the production of halocarbons. We have investigated the role of vesicle cells in the accumulation and metabolism of bromide in an isolate of the red macroalga Asparagopsis (Falkenbergia stage), a species known to release bromocarbons. Studies of laboratory-cultivated alga, using light microscopy, revealed a requirement of bromide for both the maintenance and formation of vesicle cells. Incubation of the alga in culture media with bromide concentrations below 64 mg l-1 (the concentration of Br- in seawater) resulted in a decrease in the proportion of vesicle cells to pericentral cells. The abundance of vesicle cells was correlated with bromide concentration below this level. Induction of vesicle cell formation in cultures of Falkenbergia occurred at concentrations as low as 8 mg l-1, with the abundance of vesicle cells increasing with bromide concentration up to around 100 mg l-1. Further studies revealed a positive correlation between the abundance of vesicle cells and dibromomethane and bromoform production. Interestingly, however, whilst dibromomethane production was stimulated by the presence of bromide in the culture media, bromoform release remained unaffected suggesting that the two compounds are formed by different mechanisms.
Resumo:
In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphoniaharveyi is regarded as an alien in the British Isles and Atlantic Europe, having appeared in various locations there during the past 170 years. Similar or conspecific populations are known from Atlantic North America and Japan. To choose between three competing hypotheses concerning the origin of P. harveyi in Europe, we employed rbcL sequence analysis in conjunction with karyological and interbreeding data for samples and isolates of P. harveyi and various congeners from the Pacific and North Atlantic Oceans. All cultured isolates of P. harveyi were completely interfertile, and there was no evidence of polyploidy or aneuploidy. Thus, this biological species is both morphologically and genetically variable: intraspecific rbcL divergences of up to 2.1% are high even for red algae. Seven rbcL haplotypes were identified. The four most divergent haplotypes were observed in Japanese samples from Hokkaido and south-central Honshu, which are linked by hypothetical 'missing' haplotypes that may be located in northern Honshu. These data are consistent with Japan being the centre of diversity and origin for P. harveyi. Two non-Japanese lineages were linked to Hokkaido and Honshu, respectively. A single haplotype was found in all North Atlantic and Mediterranean accessions, except for North Carolina, where the haplotype found was the same as that invading in New Zealand and California. The introduction of P. harveyi into New Zealand has gone unnoticed because P. strictissima is a morphologically indistinguishable native sibling species. The sequence divergence between them is 4–5%, greater than between some morphologically distinct red algal species. Two different types of cryptic invasions of P. harveyi have therefore occurred. In addition to its introduction as a cryptic sibling species in New Zealand, P. harveyi has been introduced at least twice into the North Atlantic from presumed different source populations. These two introductions are genetically and probably also physiologically divergent but completely interfertile.