21 resultados para Makine, Andrei


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing evidence suggests that elevated cholesterol levels in mid-life are associated with increased risk of developing Alzheimer's disease (AD), and that statins might have a protective effect against AD and dementia. The Lipitor's Effect in Alzheimer's Dementia (LEADe) study tests the hypothesis that a statin (atorvastatin 80 mg daily) will provide a benefit on the course of mild to moderate AD in patients receiving background therapy of a cholinesterase inhibitor (donepezil 10 mg daily).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Architecture plays an important role in Andrei Tarkovsky’s films in defining the atmosphere of a space and memory of a place. This paper is a study of how the settings in Tarkovsky’s Solaris (1972) are used to provoke and convey feelings to the audience through architectonic space depicting the city, library, home and aspects of the home such as paintings and mirrors. The rooms depicted in Solaris (Fig. 1) are filled with symbolism and detail. They are imbued with a poetic quality rarely seen in cinema. The everyday places of city, library and home in Solaris are given an emotional depth not usually found in these spaces in reality. Solaris is an anomaly among Tarkovsky’s films in that the majority of the narrative takes place in an enclosed built set. Rarely do Tarkovsky spaces exert so much control over the actors’ movements within a meticulously designed and detailed set. This paper analyses how the director uses constructed sets in Solaris to confront our perception of memories, dreams and reality.
The intent of this study is to gain better understanding of the link between architecture and other art forms such as painting and cinema through spatial analysis. This study also relates to our imagination and how we perceive architectonic space portrayed through cinematic images. The architectural theory of Juhani Pallasmaa forms the basis of this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the current model suggests that this asymmetry is established and maintained through treadmilling of parallel microtubules. However, we have analyzed the behavior of microtubules in the phragmoplast using live-cell imaging coupled with mathematical modeling and dynamic simulations and report that microtubules initiate randomly in the phragmoplast and that the majority exhibit dynamic instability with higher turnover rates nearer to the midzone. The directional transport of vesicles is possible because the majority of the microtubules polymerize toward the midzone. Here, we propose the first inclusive model where microtubule dynamics and phragmoplast asymmetry are consistent with the localization and activity of proteins known to regulate microtubule assembly and disassembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals(1,2). Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases(3,4). Although metacaspases are essential for PCD(5-7), their natural substrates remain unknown(4,8). Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression(9-15), is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Execution of programmed cell death (PCD) in nonmetazoan organisms is morphologically different from apoptotic PCD in animals and lacks a number of key molecular components of apoptotic machinery, including caspases. Yet protozoan, fungal, and plant cells exhibit caspase-like proteolytic activities, which increase in a PCD-dependent manner. This poses a question whether nonmetazoan organisms contain structurally dissimilar proteases that functionally substitute for caspases. Putative ancestors of caspases, metacaspases, are candidates for this role; however, their distinct substrate specificity raises doubts. The identification of a common biological target of caspases and metacaspases and previously unknown functions unrelated to cell death of metacaspases provide new food for thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial-temporal flexibility of the actin filament network (F-actin) is essential for all basic cellular functions and is governed by a stochastic dynamic model. In this model, actin filaments that randomly polymerise from a pool of free actin are bundled with other filaments and severed by ADF/cofilin. The fate of the severed fragments is not known. It has been proposed that the fragments are disassembled and the monomeric actin recycled for the polymerisation of new filaments. Here, we have generated tobacco cell lines and Arabidopsis plants expressing the actin marker Lifeact to address the mechanisms of F-actin reorganisation in vivo. We found that F-actin is more dynamic in isotropically expanding cells and that the density of the network changes with a periodicity of 70 seconds. The depolymerisation rate, but not the polymerisation rate, of F-actin increases when microtubules are destabilised. New filaments can be assembled from shorter free cytoplasmic fragments, from the products of F-actin severing and by polymerisation from the ends of extant filaments. Thus, remodelling of F-actin might not require bulk depolymerisation of the entire network, but could occur via severing and end-joining of existing polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell division depends on the fine control of both microtubule dynamics and microtubule organisation. The microtubule bundling protein MAP65 is a 'midzone MAP' essential for the integrity of the anaphase spindle and cell division. Arabidopsis thaliana MAP65-1 (AtMAP65-1) binds and bundles microtubules by forming 25 nm cross-bridges. Moreover, as AtMAP65-1 bundles microtubules in interphase, anaphase and telophase but does not bind microtubules in prophase or metaphase, its activity through the cell cycle must be under tight control. Here we show that AtMAP65-1 is hyperphosphorylated during prometaphase and metaphase and that CDK and MAPK are involved in this phosphorylation. This phosphorylation inhibits AtMAP65-1 activity. Expression of nonphosphorylatable AtMAP65-1 has a negative effect on mitotic progression resulting in excessive accumulation of microtubules in the metaphase spindle midzone causing a delay in mitosis. We conclude that normal metaphase spindle organisation and the transition to anaphase is dependent on inactivation of AtMAP65-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (EXTRA SPINDLE POLES [ESP]) is required for the establishment of cell polarity and cytokinesis in Arabidopsis thaliana. At the cellular level, separase colocalizes with microtubules and RabA2a (for RAS GENES FROM RAT BRAINA2a) GTPase-positive structures. Separase facilitates polar targeting of the auxin efflux carrier PIN-FORMED2 (PIN2) to the rootward side of the root cortex cells. Plants with the radially swollen4 (rsw4) allele with compromised separase activity, in addition to mitotic failure, display isotropic cell growth, perturbation of auxin gradient formation, slower gravitropic response in roots, and cytokinetic failure. Measurements of the dynamics of vesicle markers on the cell plate revealed an overall reduction of the delivery rates of KNOLLE and RabA2a GTPase in separase-deficient roots. Furthermore, dissociation of the clathrin light chain, a protein that plays major role in the formation of coated vesicles, was slower in rsw4 than in the control. Our results demonstrate that separase is a key regulator of vesicle trafficking, which is indispensable for cytokinesis and the establishment of cell polarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association (GWA) study, meta-analysis and follow-up (totaling as many as 18,206 cases and 42,536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7,469 bipolar disorder cases, 1,535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46,160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T], OR = 1.08, P = 6.6 × 10−11). The new variant is located within a 593 kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (P = 0.0039 in the public GIANT consortium dataset; P = 0.00047 in 22,651 additional Icelanders).