29 resultados para Magnetic nano-particles
Resumo:
Micro-and nanoparticles prepared front the biodegradable and biocompatible polymers poly(lactide-co-glycolide) (PLGA) and polymetylmethacrylate (PMMA) have been successfully used as immunopotentiating antigen delivery systems. In our study, this approach was used to improve polyclonal antibody production to clenbuterol (CBL), a model hapten. PLGA and PMMA nanoparticles were loaded with either CBL alone or with a clenbuterol-transferrin conjugate (CBL-Tfn) and administered subcutaneously to mice. PLGA nano-particles were administered with or without the saponin adjuvant Quil A. The anti-CBL titres present in experimental sera were determined by an enzyme immunoassay (ELISA). CBL-Tfn-loaded PLGA nanoparticles co-administered with Quil A had obvious advantages immmunologically over the currently used method of raising antibodies to CBL (the positive control). The combined adjuvanticity of Quil A and PLGA nanoparticles resulted in a positive response in all four of the mice tested and in higher antibody titles than were seen in the positive control group. Furthermore, the sustained release of immunogen from the nanoparticles permitted a reduction in immunizing frequency over the 15-week study period.
Resumo:
(EN)Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.
Resumo:
Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.
Resumo:
Brown's model for the relaxation of the magnetization of a single domain ferromagnetic particle is considered. This model results in the Fokker-Planck equation of the process. The solution of this equation in the cases of most interest is non- trivial. The probability density of orientations of the magnetization in the Fokker-Planck equation can be expanded in terms of an infinite set of eigenfunctions and their corresponding eigenvalues where these obey a Sturm-Liouville type equation. A variational principle is applied to the solution of this equation in the case of an axially symmetric potential. The first (non-zero) eigenvalue, corresponding to the largest time constant, is considered. From this we obtain two new results. Firstly, an approximate minimising trial function is obtained which allows calculation of a rigorous upper bound. Secondly, a new upper bound formula is derived based on the Euler-Lagrange condition. This leads to very accurate calculation of the eigenvalue but also, interestingly, from this, use of the simplest trial function yields an equivalent result to the correlation time of Coffey et at. and the integral relaxation time of Garanin. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.
Resumo:
Motion of single micrometer-sized magnetic particles on patterned magnetic surfaces is controlled by a rotating magnetic field (see Figure and cover). Patterns of thin-film magnetic elements are tailored to form transport lines. Individual particles are separated by adding junctions to the transport lines. The method can improve existing applications in biotechnology and generate new ones in life sciences.
Resumo:
Protein G-coated magnetic particles (MPs) were used as immobilisation supports for an antibody against okadaic acid (MAb(OA)) and carriers into a surface plasmon resonance (SPR) device for the development of a direct competitive immunosensor for okadaic acid (OA). SPR analysis of MAb(OA)-MP conjugates demonstrated that conjugations were successful with complete immobilisation of all the antibody biomolecules onto the MPs. Moreover, MAb(OA)-MP conjugates provided up to 11-fold higher SPR signals, compared to free MAb(OA). The use of conjugates in the direct competition assay provided a 3-fold lower LOD mu g/L (2.6 mu g of OA/L, equivalent to 12 mu g of OA/kg mussel meat). The presence of mussel matrix did not interfere in the OA quantification as seen in the calibration curves. Mussel samples, obtained from Ebro Delta's bays (NW Mediterranean) during a diarrheic shellfish poisoning (DSP) event and in the presence of Dinophysis sacculus, an OA producer, in the shellfish production area, were analysed with the MP-based SPR immunosensor. The OA contents correlated with those obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (y = 0.984x -5.273, R-2 = 0.789, p <0.001) and by mouse bioassay (MBA).
Resumo:
It is shown that the Mel'nikov-Meshkov formalism for bridging the very low damping (VLD) and intermediate-to-high damping (IHD) Kramers escape rates as a function of the dissipation parameter for mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy so that both regimes of damping, occur. The procedure is illustrated by considering the particular nonaxially symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uniform field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck equation, provided the external field is large enough to ensure significant departure from axial symmetry, so that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are valid.
Resumo:
Measurements on 'free-standing' single-crystal barium titanate capacitors with thickness down to 75 nm show a dielectric response typical of large single crystals, rather than conventional thin films. There is a notable absence of any broadening or temperature shift of the dielectric peak or loss tangent. Peak dielectric constants of similar to25 000 are observed, and Curie-Weiss analysis demonstrates first order transformation behaviour. This is in dramatic contrast to results on conventionally deposited thin film capacitor heterostructures, which show large dielectric peak broadening and temperature shifts (e.g. Parker et al 2002 Appl. Phys. Lett. 81 340), as well as an apparent change in the nature-of the paraelectric-ferroelectric transition from first to second order. Our data are compatible with a recent model by Bratkovsky and Levanyuk (2004 Preprint cond-mat/0402100), which attributes dielectric peak broadening to gradient terms that will exist in any thin film capacitor heterostructure. The observed recovery of first order transformation behaviour is consistent with the absence of significant substrate clamping in our experiment, as modelled by Pertsev et al (1998,Phys. Rev. Lett. 80 1988), and illustrates that the second order behaviour seen in conventionally deposited thin films cannot be attributed to the effects of reduced dimensionality in the system, nor to the influence of an intrinsic universal interfacial capacitance associated with the electrode- ferroelectric interface.
Resumo:
The transport of charged particles in partially turbulent magnetic systems is investigated from first principles. A generalized compound transport model is proposed, providing an explicit relation between the mean-square deviation of the particle parallel and perpendicular to a magnetic mean field, and the mean-square deviation which characterizes the stochastic field-line topology. The model is applied in various cases of study, and the relation to previous models is discussed.
Resumo:
Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.
Resumo:
Cellulose-magnetite composites have been prepared by suspension and dispersion of magnetite particles in a homogenous ionic liquid solution of cellulose, followed by regeneration into water, enabling the preparation of magnetically responsive films, flocs, fibers, or beads. The materials prepared were ferromagnetic, with a small superparamagnetic response, characteristic of the initial magnetite added. X-ray diffraction data indicated that the magnetite particles were chemically unaltered after encapsulation with an average particle size of approximately 25 nm.
Resumo:
Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.