2 resultados para Macro and micro nutrients


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Li-O2 battery may theoretically possess practical gravimetric energy densities several times greater than the current state-of-the-art Li-ion batteries.1 This magnitude of development is a requisite for true realization of electric vehicles capable of competing with the traditional combustion engine. However, significant challenges must be addressed before practical application may be considered. These include low efficiencies, low rate capabilities and the parasitic decomposition reactions of electrolyte/electrode materials resulting in very poor rechargeability.2-4 Ionic liquids, ILs, typically display several properties, extremely low vapor pressure and high electrochemical and thermal stability, which make them particularly interesting for Li-O2 battery electrolytes. However, the typically sluggish transport properties generally inhibit rate performance and cells suffer similar inefficiencies during cycling.5,6

In addition to the design of new ILs with tailored properties, formulating blended electrolytes using molecular solvents with ILs has been considered to improve their performance.7,8 In this work, we will discuss the physical properties vs. the electrochemical performance of a range of formulated electrolytes based on tetraglyme, a benchmark Li-O2 battery electrolyte solvent, and several ILs. The selected ILs are based on the bis{(trifluoromethyl)sulfonyl}imide anion and alkyl/ether functionalized cyclic alkylammonium cations, which exhibit very good stability and moderate viscosity.9 O2 electrochemistry will be investigated in these media using macro and microdisk voltammetry and O2 solubility/diffusivity is quantified as a function of the electrolyte formulation. Furthermore, galvanostatic cycling of selected electrolytes in Li-O2 cells will be discussed to probe their practical electrochemical performance. Finally, the physical characterization of the blended electrolytes will be reported in parallel to further determine structure (or formulation) vs. property relationships and to, therefore, assess the importance of certain electrolyte properties (viscosity, O2supply capability, donor number) on their performance.

This work was funded by the EPSRC (EP/L505262/1) and Innovate UK for the Practical Lithium-Air Batteries project (project number: 101577).

1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).

2. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. Bruce, Angew. Chem., Int. Ed., 50, 8609 (2011).

3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, J. Phys. Chem. Lett., 3, 997 (2012).

4. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 5, 2850 (2014).

5. Z. H. Cui, W. G. Fan and X. X. Guo, J. Power Sources, 235, 251 (2013).

6. F. Soavi, S. Monaco and M. Mastragostino, J. Power Sources, 224, 115 (2013).

7. L. Cecchetto, M. Salomon, B. Scrosati and F. Croce, J. Power Sources, 213, 233 (2012).

8. A. Khan and C. Zhao, Electrochem. Commun., 49, 1 (2014).

9. Z. J. Chen, T. Xue and J.-M. Lee, RSC Adv., 2, 10564 (2012).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of higher proportions of fly ash as a cement replacement in concrete has obvious environmental and performance benefits but high volumes of fly ash are not commonly used due to perceived lower early age strengths. In this investigation, addition of cement kiln dust (CKD) and gypsum to activate the fly ash was studied and the proportions used in the paste mixes were designed to optimize the mixture ingredients to achieve the highest early age compressive strength. Change of mineral phase composition and micro structure of the composites was analyzed. It was found that CKD was much more effective in activating the fly ash than gypsum. Appreciable early age compressive strengths were achieved for fly ash contents up to 60% of the binder and these observations were supported by analysis of the mineral phases.