3 resultados para Machine-tools - Numerical control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillating wave surge converters are a promising technology to harvest ocean wave energy in the near shore region. Although research has been going on for many years, the characteristics of the wave action on the structure and especially the phase relation between the driving force and wave quantities like velocity or surface elevation have not been investigated in detail. The main reason for this is the lack of suitable methods. Experimental investigations using tank tests do not give direct access to overall hydrodynamic loads, only damping torque of a power take off system can be measured directly. Non-linear computational fluid dynamics methods have only recently been applied in the research of this type of devices. This paper presents a new metric named wave torque, which is the total hydrodynamic torque minus the still water pitch stiffness at any given angle of rotation. Changes in characteristics of that metric over a wave cycle and for different power take off settings are investigated using computational fluid dynamics methods. Firstly, it is shown that linearised methods cannot predict optimum damping in typical operating states of OWSCs. We then present phase relationships between main kinetic parameters for different damping levels. Although the flap seems to operate close to resonance, as predicted by linear theory, no obvious condition defining optimum damping is found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotational moulding is a method to produce hollow plastic articles. Heating is normally carried out by placing the mould into a hot air oven where the plastic material in the mould is heated. The most common cooling media are water and forced air. Due to the inefficient nature of conventional hot air ovens most of the energy supplied by the oven does not go to heat the plastic and as a consequence the procedure has very long cycle times. Direct oil heating is an effective alternative in order to achieve better energy efficiency and cycle times. This research work has combined this technology with new innovative design of mould, applying the advantages of electroforming and rapid prototyping. Complex cavity geometries are manufactured by electroforming from a rapid prototyping mandrel. The approach involves conformal heating and cooling channels , where the oil flows into a parallel channel to the electroformed cavity (nickel or copper). Because of this the mould enables high temperature uniformity with direct heating and cooling of the electroformed shell, Uniform heating and cooling is important not only for good quality parts but also for good uniform wall thickness distribution in the rotationally moulded part. The experimental work with the manufactured prototype mould has enabled analysis of the thermal uniformity in the cavity, under different temperatures. Copyright © 2008 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.