12 resultados para MUTATIONAL ANALYSIS
Resumo:
Background: There is an urgent need to identify molecular signatures in small cell lung cancer (SCLC) that may select patients who are likely to respond to molecularly targeted therapies. In this study, we investigate the feasibility of undertaking focused molecular analyses on routine diagnostic biopsies in patients with SCLC.
Methods: A series of histopathologically confirmed formalin-fixed, paraffin-embedded SCLC specimens were analysed for epidermal growth factor receptors (EGFR), KRAS, NRAS and BRAF mutations, ALK gene rearrangements and MET amplification. EGFR and KRAS mutation testing was evaluated using real time polymerase chain reaction (RT-PCR cobas®), BRAF and NRAS mutations using multiplex PCR and capillary electrophoresis-single strand conformation analysis, and ALK and MET aberrations with fluorescent in situ hybridization. All genetic aberrations detected were validated independently.
Results: A total of 105 patients diagnosed with SCLC between July 1990 and September 2006 were included. 60 (57 %) patients had suitable tumour tissue for molecular testing. 25 patients were successfully evaluated for all six pre-defined molecular aberrations. Eleven patients failed all molecular analysis. No mutations in EGFR, KRAS and NRAS were detected, and no ALK gene rearrangements or MET gene amplifications were identified. A V600E substitution in BRAF was detected in a Caucasian male smoker diagnosed with SCLC with squamoid and glandular features.
Conclusion: The paucity of patients with sufficient tumour tissue, quality of DNA extracted and low frequency of aberrations detected indicate that alternative molecular characterisation approaches are necessary, such as the use of circulating plasma DNA in patients with SCLC.
Resumo:
INTRODUCTION: The dichotomization of non-small cell carcinoma (NSCLC) subtype into squamous (SQCC) and adenocarcinoma (ADC) has become important in recent years and is increasingly required with regard to management. The aim of this study was to determine the utility of a panel of commercially available antibodies in refining the diagnosis on small biopsies and also to determine whether cytologic material is suitable for somatic EGFR genotyping in a prospectively analyzed series of patients undergoing investigation for suspected lung cancer. METHODS: Thirty-two consecutive cases of NSCLC were first tested using a panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, 34betaE12, and a D-PAS stain for mucin, to determine their value in refining diagnosis of NSCLC. After this test phase, two further pathologists independently reviewed the cases using a refined panel that excluded 34betaE12 because of its low specificity for SQCC, and refinement of diagnosis and concordance were assessed. Ten cases of ADC, including eight derived from cytologic samples, were sent for EGFR mutation analysis. RESULTS: There was refinement of diagnosis in 65% of cases of NSCLC to either SQCC or ADC in the test phase. This included 10 of 13 cases where cell pellets had been prepared from transbronchial needle aspirates. Validation by two further pathologists with varying expertise in lung pathology confirmed increased refinement and concordance of diagnosis. All samples were adequate for analysis, and they all showed a wild-type EGFR genotype. CONCLUSION: A panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, and a D-PAS stain for mucin increases diagnostic accuracy and agreement between pathologists when faced with refining a diagnosis of NSCLC to SQCC or ADC. These small samples, even cell pellets derived from transbronchial needle aspirates, seem to be adequate for EGFR mutation analysis.
Resumo:
AIMS: Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. METHODS: 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. RESULTS: Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p
Resumo:
Borderline ovarian tumors represent an understudied subset of ovarian tumors. Most studies investigating aberrations in borderline tumors have focused on KRAS/BRAF mutations. In this study, we conducted an extensive analysis of mutations and single-nucleotide polymorphisms (SNPs) in borderline ovarian tumors. Using the Sequenom MassArray platform, we investigated 160 mutations/polymorphisms in 33 genes involved in cell signaling, apoptosis, angiogenesis, cell cycle regulation and cellular senescence. Of 52 tumors analyzed, 33 were serous, 18 mucinous and 1 endometrioid. KRAS c.35G>A p.Gly12Asp mutations were detected in eight tumors (six serous and two mucinous), BRAF V600E mutations in two serous tumors, and PIK3CA H1047Y and PIK3CA E542K mutations in a serous and an endometrioid BOT, respectively. CTNNB1 mutation was detected in a serous tumor. Potentially functional polymorphisms were found in vascular endothelial growth factor (VEGF), ABCB1, FGFR2 and PHLPP2. VEGF polymorphisms were the most common and detected at four loci. PHLPP2 polymorphisms were more frequent in mucinous as compared with serous tumors (P=0.04), with allelic imbalance in one case. This study represents the largest and most comprehensive analysis of mutations and functional SNPs in borderline ovarian tumors to date. At least 25% of borderline ovarian tumors harbor somatic mutations associated with potential response to targeted therapeutics.
Resumo:
INTRODUCTION: EGFR screening requires good quality tissue, sensitivity and turn-around time (TAT). We report our experience of routine screening, describing sample type, TAT, specimen quality (cellularity and DNA yield), histopathological description, mutation result and clinical outcome. METHODS: Non-small cell lung cancer (NSCLC) sections were screened for EGFR mutations (M+) in exons 18-21. Clinical, pathological and screening outcome data were collected for year 1 of testing. Screening outcome alone was collected for year 2. RESULTS: In year 1, 152 samples were tested, most (72%) were diagnostic. TAT was 4.9 days (95%confidence interval (CI)=4.5-5.5). EGFR-M+ prevalence was 11% and higher (20%) among never-smoking women with adenocarcinomas (ADCs), but 30% of mutations occurred in current/ex-smoking men. EGFR-M+ tumours were non-mucinous ADCs and 100% thyroid transcription factor (TTF1+). No mutations were detected in poorly differentiated NSCLC-not otherwise specified (NOS). There was a trend for improved overall survival (OS) among EGFR-M+ versus EGFR-M- patients (median OS=78 versus 17 months). In year 1, test failure rate was 19%, and associated with scant cellularity and low DNA concentrations. However 75% of samples with poor cellularity but representative of tumour were informative and mutation prevalence was 9%. In year 2, 755 samples were tested; mutation prevalence was 13% and test failure only 5.4%. Although samples with low DNA concentration (2.2 ng/μL), the mutation rate was 9.2%. CONCLUSION: Routine epidermal growth factor receptor (EGFR) screening using diagnostic samples is fast and feasible even on samples with poor cellularity and DNA content. Mutations tend to occur in better-differentiated non-mucinous TTF1+ ADCs. Whether these histological criteria may be useful to select patients for EGFR testing merits further investigation.
Resumo:
Tumor genomic instability and selective treatment pressures result in clonal disease evolution; molecular stratification for molecularly targeted drug administration requires repeated access to tumor DNA. We hypothesized that circulating plasma DNA (cpDNA) in advanced cancer patients is largely derived from tumor, has prognostic utility, and can be utilized for multiplex tumor mutation sequencing when repeat biopsy is not feasible. We utilized the Sequenom MassArray System and OncoCarta panel for somatic mutation profiling. Matched samples, acquired from the same patient but at different time points were evaluated; these comprised formalin-fixed paraffin-embedded (FFPE) archival tumor tissue (primary and/or metastatic) and cpDNA. The feasibility, sensitivity, and specificity of this high-throughput, multiplex mutation detection approach was tested utilizing specimens acquired from 105 patients with solid tumors referred for participation in Phase I trials of molecularly targeted drugs. The median cpDNA concentration was 17 ng/ml (range: 0.5-1600); this was 3-fold higher than in healthy volunteers. Moreover, higher cpDNA concentrations associated with worse overall survival; there was an overall survival (OS) hazard ratio of 2.4 (95% CI 1.4, 4.2) for each 10-fold increase in cpDNA concentration and in multivariate analyses, cpDNA concentration, albumin, and performance status remained independent predictors of OS. These data suggest that plasma DNA in these cancer patients is largely derived from tumor. We also observed high detection concordance for critical 'hot-spot' mutations (KRAS, BRAF, PIK3CA) in matched cpDNA and archival tumor tissue, and important differences between archival tumor and cpDNA. This multiplex sequencing assay can be utilized to detect somatic mutations from plasma in advanced cancer patients, when safe repeat tumor biopsy is not feasible and genomic analysis of archival tumor is deemed insufficient. Overall, circulating nucleic acid biomarker studies have clinically important multi-purpose utility in advanced cancer patients and further studies to pursue their incorporation into the standard of care are warranted.
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial.
Resumo:
In this updated analysis of the EXPERT-C trial we show that, in magnetic resonance imaging-defined, high-risk, locally advanced rectal cancer, adding cetuximab to a treatment strategy with neoadjuvant CAPOX followed by chemoradiotherapy, surgery, and adjuvant CAPOX is not associated with a statistically significant improvement in progression-free survival (PFS) and overall survival (OS) in both KRAS/BRAF wild-type and unselected patients. In a retrospective biomarker analysis, TP53 was not prognostic but emerged as an independent predictive biomarker for cetuximab benefit. After a median follow-up of 65.0 months, TP53 wild-type patients (n = 69) who received cetuximab had a statistically significant better PFS (89.3% vs 65.0% at 5 years; hazard ratio [HR] = 0.23; 95% confidence interval [CI] = 0.07 to 0.78; two-sided P = .02 by Cox regression) and OS (92.7% vs 67.5% at 5 years; HR = 0.16; 95% CI = 0.04 to 0.70; two-sided P = .02 by Cox regression) than TP53 wild-type patients who were treated in the control arm. An interaction between TP53 status and cetuximab effect was found (P <.05) and remained statistically significant after adjusting for statistically significant prognostic factors and KRAS.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
PurposeTP53 mutations have been described in chronic lymphocytic leukemia (CLL) and have been associated with poor prognosis in retrospective studies. We aimed to address the frequency and prognostic value of TP53 abnormalities in patients with CLL in the context of a prospective randomized trial.Patients and MethodsWe analyzed 529 CLL samples from the LRF CLL4 (Leukaemia Research Foundation Chronic Lymphocytic Leukemia 4) trial (chlorambucil v fludarabine with or without cyclophosphamide) at the time of random assignment for mutations in the TP53 gene. TP53 mutation status was correlated with response and survival data.ResultsMutations of TP53 were found in 40 patients (7.6%), including 25 (76%) of 33 with 17p deletion and 13 (3%) of 487 without that deletion. There was no significant correlation between TP53 mutations and age, stage, IGHV gene mutations, CD38 and ZAP-70 expression, or any other chromosomal abnormality other than 17p deletion, in which concordance was high (96%). TP53 mutations were significantly associated with poorer overall response rates (27% v 83%; P <.001) and shorter progression-free survival (PFS) and overall survival (OS; 5-year PFS: 5% v 17%; 5-year OS: 20% v 59%; P <.001 for both). Multivariate analysis that included baseline clinical variables, treatment, and known adverse genetic factors confirmed that TP53 mutations have added prognostic value.ConclusionTP53 mutations are associated with impaired response and shorter survival in patients with CLL. Analysis of TP53 mutations should be performed in patients with CLL who have progressive disease before starting first-line treatment, and those with mutations should be selected for novel experimental therapies. J Clin Oncol 29: 2223-2229. (C) 2011 by American Society of Clinical Oncology
Resumo:
ZAP-70, CD38 and IGHV mutations have all been reported to have prognostic impact in chronic lymphocytic leukemia (CLL), both individually and in paired combinations. We aimed to determine whether the combination of all three factors provided more refined prognostic information concerning the treatment-free interval (TFI) from diagnosis. ZAP-70, CD38 and IGHV mutations were evaluated in 142 patients. Combining all three factors, the ZAP-70-/CD38-/Mutated group showed the longest median TFI (62 months, n = 37), ZAP-70+/CD38+/Unmutated cases the shortest (11 months, n = 37) and cases discordant for > or = 1 factor, an intermediate TFI (27 months, n = 68) (p = 0.006). Analysis of discordant cases revealed values that were otherwise masked when measuring single prognostic factors. The presence or absence of cytogenetic abnormalities did not explain the variability among discordant cases. Simultaneous analysis of ZAP-70, CD38 and IGHV mutations in CLL provides more discriminatory prediction of TFI than any factor alone.