90 resultados para MUJERES INMIGRANTES - CANADA
Resumo:
The partially semi-arid Oldman River basin (OMRB), located in southern Alberta (Canada), has an area of 28 200 km2, is forested in its western headwater part, and is used for agriculture in its eastern part. Hydrometric measurements indicate that flow in the Oldman River has decreased by ~34% between 1913 and 2003, and it is predicted that water withdrawals will increase in the next 20 years. The objective of this study was to determine whether isotope ratio measurements can provide further insight into the water dynamics of the Oldman River and its tributaries. Surface water samples were collected monthly between December 2000 and March 2003. Groundwater samples were taken from 58 wells during one-time sampling trips. Runoff within the OMRB is currently about 70 mm year-1, with a corresponding runoff ratio of 0Ð18. Seasonal flow characteristics are markedly different upstream and downstream of the Oldman River reservoir. Upstream, sharp increases in flow in late spring and early summer are followed by a rapid decrease to base flow levels. Downstream, a prolonged high flow peak is observed due to the storage effect of the Oldman River reservoir. The seasonal variation in the isotopic composition of surface water from upstream sites is small. This suggests that peak runoff is not predominantly generated by melting snow accumulated during the preceding winter, but mainly by relatively well-mixed young groundwater. A significant increase in the d18O and d2H values in the downstream part of the basin was observed. The increase in the isotopic values is partly due to surface water and groundwater influx with progressively higher d18O and d2H values in the eastern part, and partly due to evaporation. Hence, the combination of hydrometric data with isotope measurements yields valuable insights into the water dynamics in the OMRB that may be further refined with more intensive measurement programmes in the future.
Resumo:
The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.
Resumo:
Concentrations and isotopic compositions of NO-3 from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO-3 sources within the OMR basin. For the OMR sites, NO-3 -N concentrations reached up to 0.34 mg L-1, d15N-NO-3 values varied between –0.3 and +13.8‰, and d18O-NO-3 values ranged from –10.0 to +5.7‰. For the tributary sites, NO-3 -N concentrations were as high as 8.81 mg L-1, d15N-NO-3 values varied between –2.5 and +23.4‰, and d18O-NO-3 values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantly NO-3 to the OMR with d15N-NO-3 indicative of soil nitrification. In contrast, tributaries in the eastern agriculturally-urban-industrially-used part of the basin contribute NO-3 with d15N-NO-3 values of about +16‰ indicative of manure and/or sewage derived NO-3. This difference in d15N-NO-3 values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO-3 source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, d15N-NO-3 values in the Oldman River increased from +6‰ in the downstream direction (W to E), although [NO-3 -N] increased only moderately (generally