48 resultados para MILL EFFLUENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with recovery of water from the effluent in a paint factory in Kuala Lumpur for reuse using microfiltration technique.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter one of novel in progress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGAs) are micron-sized gas bubbles of 25–30 µm in diameter produced by a high-speed stirrer in a vessel containing dilute surfactant solution. These bubbles, because of their small size, exhibit some colloidal properties. In this work, CGAs were used to separate fine fibres from a lean slurry of cellulosic pulp in a flotation column. The pulp fibres were recovered as foamate from the top. Sodium dodecyl sulphate at a concentration of 2.0 kg/m3 was used as a surfactant to generate the CGAs in a spinning disc apparatus. The results indicated that up to 70% flotation efficiency could be obtained within a short column height of 0.3–0.35 m. This technique can be applied to recover fine cellulosic pulp from paper-machine backwater.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemoselective acylation of primary aliphatic amines has been achieved in under ten minutes (and for aromatic amines under 120 min) using vibration ball-milling, avoiding undesirable solvents which are typically employed for such reactions (e.g. DMF). Under optimised conditions, the synthesis of amides in the presence of both primary and secondary alcohol functions was achieved in high to excellent yields (65-94%). Overall, the methods described have significant practical advantages over conventional approaches based upon bulk solvents including greater yields, higher chemoselectivity and easier product separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a ball mill, rapid, atom-economic coupling between adenosine-5'-phosphoromorpholidate and phosphorylated ribose derivatives as their sodium or barium salts was achieved. Facile purification by reversed-phase HPLC enabled product isolation within hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using caffeic acid and p-hydroxybenzoic acid as templates, two molecularly imprinted polymers (MIPs) were prepared that were used for isolation of polyphenols from olive mill waste water samples (OMWWs) without previous pre-treatment. For the preparation of the caffeic acid MIPs 4-vinylpyridine, allylurea, allylaniline and methacrylic acid were tested as functional monomers, ethylene glycol dimethylacrylate (EDMA), pentaerythritol trimethylacrylate (PETRA) and divinylbenzene 80 (DVB80) as cross-linkers and tetrahydrofuran as porogen. For p-hydroxybenzoic acid 4-vinylpyridine, allylurea and allylaniline were tested as functional monomers, EDMA and PETRA as cross-linkers and acetonitrile as porogen. The performance of the synthesized polymers was evaluated against seven structurally related compounds by means of polymer-based HPLC. The two polymers that presented the most interesting properties were further evaluated by batch rebinding and from the derived isotherms their capacity and binding strength were determined. Using solid-phase extraction (SPE), their ability to recognize and bind the template molecule from an aqueous solution as well as the pH dependence of the binding strength were explored. After establishing the best SPE protocol, an aqueous model mixture of compounds and a raw OMWWs sample were loaded on the two best polymers. The result of the consecutive use of the two polymers on the same sample was explored. It was concluded that acidic conditions favour the recognition abilities of both polymers and that they can be used for a quick and efficient isolation of the polyphenol fraction directly from raw OMWW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In this study, the efficiency of Guar gum as a biopolymer has been compared with two other widely used inorganic coagulants, ferric chloride (FeCl3) and aluminum chloride (AlCl3), for the treatment of effluent collected from the rubber-washing tanks of a rubber concentrate factory. Settling velocity distribution curves were plotted to demonstrate the flocculating effect of FeCl3, AlCl3 and Guar gum. FeCl3 and AlCl3 displayed better turbidity removal than Guar gum at all settling velocities.

Result: FeCl3, AlCl3 and Guar gum removed 92.8%, 88.2% and 88.1% turbidity, respectively, of raw wastewater at a settling velocity of 0.1 cm min-1, respectively. Scanning electron microscopic (SEM) study conducted on the flocs revealed that Guar gum and FeCl3produced strong intercoiled honeycomb patterned floc structure capable of entrapping suspended particulate matter. Statistical experimental design Response Surface Methodology (RSM) was used to design all experiments, where the type and dosage of flocculant, pH and mixing speed were taken as control factors and, an optimum operational setting was proposed.

Conclusion: Due to biodegradability issues, the use of Guar gum as a flocculating agent for wastewater treatment in industry is highly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of TiO 2 photocatalysis for the destruction of dyes such as methylene blue has been extensively reported. One of the challenges faced in both the laboratory and large scale water treatment plants is the fact that the samples have to be removed from the reactor vessel and the catalyst separated prior to analysis being undertaken. In this paper we report the development of a simple fluorimeter instrument and its use in monitoring the photocatalytic destruction of methylene blue dyes in the presence of catalyst suspensions. The results reported show that the instrument provides an effective method for in situ monitoring of the photocatalytic destruction of fluorescent dyes hence allowing more accurate measurement due to the minimisation of sample loss and cross contamination. Furthermore it also provides a method for real time monitoring of the dye pollutant destruction in large scale photocatalytic reactors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nucleoside analogues containing photoswitchable moieties were prepared using 'click' cycloaddition reactions between 5 '-azido-5 '-deoxythymidine and mono- or bis-N-propargylamide-substituted azobenzenes. In solution, high to quantitative yields were achieved using 5mol% Cu(I) in the presence of a stabilizing ligand. 'Click' reactions using the monopropargylamides were also effected in the absence of added cuprous salts by the application of liquid assisted grinding (LAG) in metallic copper reaction vials. Specifically, high speed vibration ball milling (HSVBM) using a 3/32('') (2.38mm) diameter copper ball (62mg) at 60Hz overnight in the presence of ethyl acetate lead to complete consumption of the 5 '-azido nucleoside with clean conversion to the corresponding 1,3-triazole.