19 resultados para MATRIX-ELEMENTS
Resumo:
The electron energy-loss near-edge structure (ELNES) at the oxygen K-edge has been investigated in a range of yttria-stabilized zirconia (YSZ) materials. The electronic structure of the three polymorphs of pure ZrO2 and of the doped YSZ structure close to the 33 mol %Y2O3 composition have been calculated using a full-potential linear muffin-tin orbital method (NFP-LMTO) as well as a pseudopotential based technique. Calculations of the ELNES dipole transition matrix elements in the framework of the NFP-LMTO scheme and inclusion of core hole screening within Slater's transition state theory enable the ELNES to be computed. Good agreement between the experimental and calculated ELNES is obtained for pure monoclinic ZrO2. The agreement is less good with the ideal tetragonal and cubic structures. This is because the inclusion of defects is essential in the calculation of the YSZ ELNES. If the model used contains ordered defects such as vacancies and metal Y planes, agreement between the calculated and experimental O K-edges is significantly improved. The calculations show how the five different O environments of Zr,Y,O, are connected with the features observed in the experimental spectra and demonstrate clearly the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We analyse H + D-2 reactive angular scattering using the S- matrix elements obtained by Aoiz et al. and Althorpe et al. Enhancement of small angle scattering in the v' = 3
Resumo:
A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.
Resumo:
We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals, This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.
Resumo:
We construct $x^0$ in ${\Bbb R}^{\Bbb N}$ and a row-finite matrix $T=\{T_{i,j}(t)\}_{i,j\in\N}$ of polynomials of one real variable $t$ such that the Cauchy problem $\dot x(t)=T_tx(t)$, $x(0)=x^0$ in the Fr\'echet space $\R^\N$ has no solutions. We also construct a row-finite matrix $A=\{A_{i,j}(t)\}_{i,j\in\N}$ of $C^\infty(\R)$ functions such that the Cauchy problem $\dot x(t)=A_tx(t)$, $x(0)=x^0$ in ${\Bbb R}^{\Bbb N}$ has no solutions for any $x^0\in{\Bbb R}^{\Bbb N}\setminus\{0\}$. We provide some sufficient condition of solvability and of unique solvability for linear ordinary differential equations $\dot x(t)=T_tx(t)$ with matrix elements $T_{i,j}(t)$ analytically dependent on $t$.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
This paper discusses the calculation of electron impact collision strengths and effective collision strengths for iron peak elements of importance in the analysis of many astronomical and laboratory spectra. It commences with a brief overview of R-matrix theory which is the basis of computer programs which have been widely used to calculate the relevant atomic data used in this analysis. A summary is then given of calculations carried out over the last 20 y for electron collisions with Fe II. The grand challenge, represented by the calculation of accurate collision strengths and effective collision strengths for this ion, is then discussed. A new parallel R-matrix program PRMAT, which is being developed to meet this challenge, is then described and results of recent calculations, using this program to determine optically forbidden transitions in e- – Ni IV on a Cray T3E-1200 parallel supercomputer, are presented. The implications of this e- – Ni IV calculation for the determination of accurate data from an isoelectronic e- – Fe II calculation are discussed and finally some future directions of research are reviewed.
Resumo:
We discuss complementarity relations in a bipartite continuous variable system. Building up from the work done on discrete d-dimensional systems, we prove that for symmetric two-mode states, quantum complementarity relations can be put in a simple relation with the elements of the variance matrix. When this condition is not satisfied, such a connection becomes non-trivial. Our investigation is the first step towards an operative characterization of the complementarity in a scenario that has not been investigated so far.
Resumo:
Composite damage modelling with cohesive elements has initially been limited to the analysis of interface damage or delamination. However, their use is also being extended to the analysis of inplane tensile failure arising from matrix or fibre fracture. These interface elements are typically placed at locations where failure is likely to occur, which infers a certain a priori knowledge of the crack propagation path(s). In the case of a crack jump for example, the location of the jump is usually not obvious, and the simulation would require the placement of cohesive elements at all element faces. A better option, presented here, is to determine the potential location of cohesive elements and insert them during the analysis. The aim of this work is to enable the determination of the crack path, as part of the solution process. A subroutine has been developed and implemented in the commercial finite element package ABAQUS/Standard[1] in order to automatically insert cohesive elements within a pristine model, on the basis of the analysis of the current stress field. Results for the prediction of delamination are presented in this paper.
Resumo:
Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.
Resumo:
Numerous experimental studies of damage in composite laminates have shown that intralaminar (in-plane) matrix cracks lead to interlaminar delamination (out-of-plane) at ply interfaces. The smearing of in-plane cracks over a volume, as a consequence of the use of continuum damage mechanics, does not always effectively capture the full extent of the interaction between the two failure mechanisms. A more accurate representation is obtained by adopting a discrete crack approach via the use of cohesive elements, for both in-plane and out-of-plane damage. The difficulty with cohesive elements is that their location must be determined a priori in order to generate the model; while ideally the position of the crack migration, and more generally the propagation path, should be obtained as part of the problem’s solution. With the aim of enhancing current modelling capabilities with truly predictive capabilities, a concept of automatic insertion of interface elements is utilized. The consideration of a simple traction criterion in relation to material strength, evaluated at each node of the model (or of the regions of the model where it is estimated cracks might form), allows for the determination of initial crack location and subsequent propagation by the insertion of cohesive elements during the course of the analysis. Several experimental results are modelled using the commercial package ABAQUS/Standard with an automatic insertion subroutine developed in this work, and the results are presented to demonstrate the capabilities of this technique.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
Over the last decade an Auburn-Rollins-Strathclyde consortium has developed several suites of parallel R-matrix codes [1, 2, 3] that can meet the fundamental data needs required for the interpretation of astrophysical observation and/or plasma experiments. Traditionally our collisional work on light fusion-related atoms has been focused towards spectroscopy and impurity transport for magnetically confined fusion devices. Our approach has been to provide a comprehensive data set for the excitation/ionization for every ion stage of a particular element. As we progress towards a burning fusion plasma, there is a demand for the collisional processes involving tungsten, which has required a revitalization of the relativistic R-matrix approach. The implementation of these codes on massively parallel supercomputers has facilitated the progression to models involving thousands of levels in the close-coupling expansion required by the open d and f sub-shell systems of mid Z tungsten. This work also complements the electron-impact excitation of Fe-Peak elements required by astrophysics, in particular the near neutral species, which offer similar atomic structure challenges. Although electron-impact excitation work is our primary focus in terms of fusion application, the single photon photoionisation codes are also being developed in tandem, and benefit greatly from this ongoing work.
Resumo:
A first stage collision database is assembled which contains electron-impact excitation, ionization,\r and recombination rate coefficients for B, B + , B 2+ , B 3+ , and B 4+ . The first stage database\r is constructed using the R-matrix with pseudostates, time-dependent close-coupling, and perturbative\r distorted-wave methods. A second stage collision database is then assembled which contains\r generalized collisional-radiative ionization, recombination, and power loss rate coefficients as a\r function of both temperature and density. The second stage database is constructed by solution of\r the collisional-radiative equations in the quasi-static equilibrium approximation using the first\r stage database. Both collision database stages reside in electronic form at the IAEA Labeled Atomic\r Data Interface (ALADDIN) database and the Atomic Data Analysis Structure (ADAS) open database.