61 resultados para MATERIALS SCIENCE, CHARACTERIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models and software products have been developed for modelling, simulation and prediction of different correlations in materials science, including 1. the correlation between processing parameters and properties in titanium alloys and ?-titanium aluminides; 2. timetemperaturetransformation (TTT) diagrams for titanium alloys; 3. corrosion resistance of titanium alloys; 4. surface hardness and microhardness profile of nitrocarburised layers; 5. fatigue stress life (SN) diagrams for Ti6Al4V alloys. The programs are based on trained artificial neural networks. For each particular case appropriate combination of inputs and outputs is chosen. Very good performances of the models are achieved. Graphical user interfaces (GUI) are created for easy use of the models. In addition interactive text versions are developed. The models designed are combined and integrated in software package that is built up on a modular fashion. The software products are available in versions for different platforms including Windows 95/98/2000/NT, UNIX and Apple Macintosh. Description of the software products is given, to demonstrate that they are convenient and powerful tools for practical applications in solving various problems in materials science. Examples for optimisation of the alloy compositions, processing parameters and working conditions are illustrated. An option for use of the software in materials selection procedure is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transdermal drug delivery offers a number of advantages for the patient, due not only its non-invasive and convenient nature, but also factors such as avoidance of first pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedle arrays can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. Microneedles have been extensively investigated in recent decades for drug and vaccine delivery as well as minimally invasive patient monitoring/diagnosis. This review focuses on a range of critically important aspects of microneedle technology, namely their material composition, manufacturing techniques, methods of evaluation and commercial translation to the clinic for patient benefit and economic return. Microneedle research and development is finally now at the stage where commercialisation is a realistic possibility. However, progress is still required in the areas of scaled-up manufacture and regulatory approval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of free standing conducting polypyrrole film using room temperature melt as the electrolyte is reported. We also report variation in the contribution of ionic conductance with temperature of the polymer film by four probe method and electrochemical properties like diffusion coefficient and ionic mobility of AlCl-4 doped polypyrrole film. An attempt has been made to arrive at the stability of charge carrier concentration over a temperature range of 295 to 350 K under vacuum. The film was characterized by optical techniques and scanning electron micrography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide nanoparticles have been synthesized by microwave decomposition of zinc acetate precursor using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [bmim][NTf2] as a green solvent. The structure and morphology of ZnO nanoparticles have been characterized using X-ray diffraction and transmission electron microscopy. The ZnO nanofluids have been prepared by dispersing ZnO nanoparticles in glycerol as a base fluid in the presence of ammonium citrate as a dispersant. The antibacterial activity of suspensions of ZnO nanofluids against (E. coli) has been evaluated by estimating the reduction ratio of the bacteria treated with ZnO. Survival ratio of bacteria decreases with increasing the concentrations of ZnO nanofluids and time. The results show that an increase in the concentrations of ZnO nanofluids produces strong antibacterial activity toward E. coli. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten carbide (WC) with controlled pore size distribution was synthesized using a novel precursor reassembly method. The precursor crystal was assembled by mixing ammonium metatungstate (AMT) and ammonium carbonate (AC) in distilled water, followed by hydrothermal treatment. The mesostructure, crystal phase, and amount of deposited graphitic carbon can be conveniently tuned by controlling carburizing atmosphere (CO or a CO/H2 mixture). Moreover, the influence of precursor preparation (AMT/AC mass ratio and hydrothermal temperature) on the materials was also investigated. The resultant materials with low carbon content were mesoporous WCs, which showed high specific surface areas (11.3-20.4 m2 g-1) and adjustable pore-size distributions (average pore size: 15.3-22.3 nm). A mechanism for the formation of WC with a controllable porous framework is proposed. Finally, cyclic voltammetry was used to investigate the inference of different mesoporous structure.