6 resultados para MADS-BOX GENE
Resumo:
A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.
Resumo:
Lesions involving the anterior thalamic nuclei stopped immediate early gene (IEG) activity in specific regions of the rat retrosplenial cortex, even though there were no apparent cytoarchitectonic changes. Discrete anterior thalamic lesions were made either by excitotoxin (Experiment 1) or radiofrequency (Experiment 2) and, following recovery, the rats foraged in a radial-arm maze in a novel room. Measurements made 6-12 weeks postsurgery showed that, in comparison with surgical controls, the thalamic lesions produced the same, selective patterns of Fos changes irrespective of method. Granular (caudal granular cortex and rostral granular cortex), but not dysgranular (dysgranular cortex), retrosplenial cortex showed a striking loss of Fos-positive cells. While a loss of between 79 and 89% of Fos-positive cells was found in the superficial laminae, the deeper layers appeared normal. In Experiments 3 and 4, rats 9-10 months postsurgery were placed in an activity box for 30 min. Anterior thalamic lesions (Experiment 3) led to a pronounced IEG decrease of both Fos and zif268 throughout the retrosplenial cortex that now included the dysgranular area. These IEG losses were found even though the same regions appeared normal using standard histological techniques. Lesions of the postrhinal cortex (Experiment 4) did not bring about a loss of retrosplenial IEG activity even though this region is also reciprocally connected with the retrosplenial cortex. This selective effect of anterior thalamic damage upon retrosplenial activity may both amplify the disruptive effects of anterior thalamic lesions and help to explain the posterior cingulate hypoactivity found in Alzheimer's disease.
Resumo:
Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.
Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.
Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.
Resumo:
T-box 2 (TBX2) is a transcription factor involved in mammary development and is known to be overexpressed in a subset of aggressive breast cancers. TBX2 has previously been shown to repress growth control genes such as p14(ARF) and p21(WAF1/cip1). In this study we show that TBX2 drives proliferation in breast cancer cells and this is abrogated after TBX2 small interfering RNA (siRNA) knockdown or after the expression of a dominant-negative TBX2 protein. Using microarray analysis we identified a large cohort of novel TBX2-repressed target genes including the breast tumour suppressor NDRG1 (N-myc downregulated gene 1). We show that TBX2 targets NDRG1 through a previously undescribed mechanism involving the recruitment of early growth response 1 (EGR1). We show EGR1 is required for the ability of TBX2 to repress NDRG1 and drive cell proliferation. We show that TBX2 interacts with EGR1 and that TBX2 requires EGR1 to target the NDRG1 proximal promoter. Abrogation of either TBX2 or EGR1 expression is accompanied by the upregulation of cell senescence and apoptotic markers. NDRG1 can recapitulate these effects when transfected into TBX2-expressing cells. Together, these data identify a novel mechanism for TBX2-driven oncogenesis and highlight the importance of NDRG1 as a growth control gene in breast tissue. Oncogene (2010) 29, 3252-3262; doi: 10.1038/onc.2010.84; published online 29 March 2010
Resumo:
Several growth factors and transcription factors have been reported to play important roles in brown adipocyte differentiation and modulation of thermogenic gene expression, especially the expression of UCP1. In this study, we focused on KLF11 and KLF15, which were expressed highly in brown adipose tissue. Our data demonstrated that KLF11 and KLF15 interacted directly with the UCP1 promoter using GC-box and GT-boxes, respectively. Co-transfection of KLF11 and KLF15 in the mesenchymal stem cell line muBM3.1 during brown adipocyte differentiation enhanced the expression level of UCP1. KLF11, but not KLF15, was essential for UCP1 expression during brown adipocyte differentiation of muBM3.1.