7 resultados para Lovejoy, Elijah P. (Elijah Parish), 1802-1837.
Resumo:
American lobsters (Homarus americanus H. Milne Edwards, 1837) are imported live to Europe and should according regulations be kept in land-based tanks until sold. In spite of the strict regulations aimed specifically at preventing the introduction of this species into the NE Atlantic, several specimens of H. americanus have been captured in the wild, especially in Oslofjord, Norway since 1999. One of the great concerns is interbreeding between the introduced American species and the local European lobster, H. gammarus (Linnaeus, 1758). For this reason an awareness campaign was launched in 2000 focusing on morphologically "unusual" lobsters caught in local waters. Morphological characters have been based on colour and sub-ventral spines on the rostrum. Two samples of H. americanus were used for comparisons, as well as samples of European lobster from Oslofjord collected in 1992. Previous genetic analyses (allozymes, mtDNA and microsatellite DNA) have demonstrated that the American lobster is distinct from its European counterpart, with several additional alleles at many loci in addition to different allelic frequency distribution of alleles of "shared" alleles. During the present study, thirteen microsatellite loci were tested in the initial screening, and the three most discriminating loci (Hgam98, Hgam197b and Hgam47b) were used in a detailed comparison between the two species. A total of 45 unusual lobsters were reported captured from Ålesund (west) to Oslofjord (southeast) from 2001 to 2005 and these were analysed for the three microsatellite loci. Nine specimens were identified as American lobsters. Comparisons between morphological and genetic characteristics revealed that morphological differences are not reliable in discrimination the two species, or to identify hybrids. Further, some loci display almost no overlapping in allele frequency distribution for the reference samples analysed, thus providing a reliable tool to identify hybrids.
Resumo:
Average longevity of the mountain hare (Lepus timidus L., 1758) has been estimated at nine years in the wild (Macdonald D. and Barrett, P. 1993 Mammals of Britain and Europe. Harper Collins Publishers, London) with a maximum recorded age of 18 years for one marked animal (Angerbjörn, A. and Flux, J. E. C. 1995 Lepus timidus. Mammalian Species 495: 1–11). However, the longevity of the Irish hare (L. t. hibernicus Bell 1837) is entirely unknown. A total of 14 Irish hares was trapped and tagged at Belfast International Airport, Co. Antrim from February to April 2005. The sex, age (juvenile or adult) and weight of each animal were recorded. Adults were taken as those individuals >8-10 months old defined by the fusing of the notch between the apophysis and diaphysis of the tibia and humerus (Flux, J. E. C. 1970 Journal of Zoology 161: 75-123). Individual identification was made by a system of colourcoded ear tags (Roxan iD Ltd. Selkirk, Scotland) being inserted in the centre of the pinna of each ear. Each ear tag (6 × 34 mm) and puncture site was disinfected with 70 per cent ethanol prior to insertion. An adult male, #001/002 ‘Blue/Blue’, was tagged on 3 March 2005 weighing 3.8 kg and was sighted during a return site visit on 4 April 2007. An adult female, #026/003 ‘Green/Yellow’, was tagged on 15 April 2005 weighing 4.0 kg and was sighted during return visits on 25 March 2010 and 19 October 2010. The latest possible date of birth for both individuals was spring/summer 2004. Consequently, they were at least 3 years and 6.5 years old, respectively. This is the first record of minimum Irish hare longevity in the wild. These observations suggest that ear tagging does not compromise animal welfare and is an effective means of long-term monitoring. Future research may utilize capture-mark-recapture methods.
Resumo:
<p>Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) remain major causes of heart failure, stroke and death among African women and children, despite being preventable and imminently treatable. From 21 to 22 February 2015, the Social Cluster of the Africa Union Commission (AUC) hosted a consultation with RHD experts convened by the Pan-African Society of Cardiology (PASCAR) in Addis Ababa, Ethiopia, to develop a 'roadmap' of key actions that need to be taken by governments to eliminate ARF and eradicate RHD in Africa. Seven priority areas for action were adopted: (1) create prospective disease registers at sentinel sites in affected countries to measure disease burden and track progress towards the reduction of mortality by 25% by the year 2025, (2) ensure an adequate supply of high-quality benzathine penicillin for the primary and secondary prevention of ARF/RHD, (3) improve access to reproductive health services for women with RHD and other non-communicable diseases (NCD), (4) decentralise technical expertise and technology for diagnosing and managing ARF and RHD (including ultrasound of the heart), (5) establish national and regional centres of excellence for essential cardiac surgery for the treatment of affected patients and training of cardiovascular practitioners of the future, (6) initiate national multi-sectoral RHD programmes within NCD control programmes of affected countries, and (7) foster international partnerships with multinational organisations for resource mobilisation, monitoring and evaluation of the programme to end RHD in Africa. This Addis Ababa communiqué has since been endorsed by African Union heads of state, and plans are underway to implement the roadmap in order to end ARF and RHD in Africa in our lifetime.p>