36 resultados para Loading effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronisation of small distributed generation, 30 kVA–2 MVA, employing salient-pole synchronous machines is normally performed within a narrow range of tolerances for voltage, frequency and phase angle. However, there are situations when the ability to synchronise with non-ideal conditions would be beneficial. Such applications include power system islanding and rapid generator start-up. The physical process and effect of out-of-phase synchronisation is investigated both through simulation and experimental tests on a salient-pole alternator. There are many factors that affect synchronisation, but particular attention is given to synchronisation angle, voltage difference and, as generators will be loaded during islanding, the load angle. The results suggest that it would be acceptable for the maximum synchronisation angle of distributed generation to exceed that of current practice. Interesting observations on the nature of out-of-phase synchronisation are made, including some specific to small salient-pole synchronous machines. Furthermore, recommendations are made for synchronisation under different system conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A combination of experiments and non-linear finite element analyses are used to investigate the effect of offset web holes on the web crippling strength of cold-formed steel channel sections under the end-two-flange (ETF) loading condition; the cases of both flanges fastened and unfastened to the support are considered. The web holes are located at the mid-depth of the sections, with a horizontal clear distance of the web holes to the near edge of the bearing plate. Finite element analysis results are compared against the laboratory test results; good agreement was obtained in terms of both strength and failure modes. A parametric study was then undertaken to investigate both the effect of the position of holes in the web and the cross-section sizes on the web crippling strength of the channel sections. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, and the ratio of the distance from the edge of the bearing to the flat depth of the web. Design recommendations in the form of web crippling strength reduction factors are proposed in this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Creep of Steel Fiber Reinforced Concrete (SFRC) under flexural loads in the cracked state and to what extent different factors determine creep behaviour are quite understudied topics within the general field of SFRC mechanical properties. A series of prismatic specimens have been produced and subjected to sustained flexural loads. The effect of a number of variables (fiber length and slenderness, fiber content, and concrete compressive strength) has been studied in a comprehensive fashion. Twelve response variables (creep parameters measured at different times) have been retained as descriptive of flexural creep behaviour. Multivariate techniques have been used: the experimental results have been projected to their latent structure by means of Principal Components Analysis (PCA), so that all the information has been reduced to a set of three latent variables. They have been related to the variables considered and statistical significance of their effects on creep behaviour has been assessed. The result is a unified view on the effects of the different variables considered upon creep behaviour: fiber content and fiber slenderness have been detected to clearly modify the effect that load ratio has on flexural creep behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Web openings could be used in cold-formed steel beam members, such as wall studs or floor joints, to facilitate ease of services in buildings. In this paper, a combination of tests and non-linear finite element analyses is used to investigate the effect of such holes on web crippling under end-one-flange (EOF) loading condition; the cases of both flanges fastened and unfastened to the bearing plates are considered. The results of 74 web crippling tests are presented, with 22 tests conducted on channel sections without web openings and 52 tests conducted on channel sections with web openings. In the case of the tests with web openings, the hole was either located centred above the bearing plates or having a horizontal clear distance to the near edge of the bearing plates. A good agreement between the tests and finite element analyses was obtained in term of both strength and failure modes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parametric study of cold-formed steel sections with web openings subjected to web crippling under end-one-flange (EOF) loading condition is undertaken, using finite element analysis, to investigate the effects of web holes and cross-section sizes. The holes are located either centred above the bearing plates or with a horizontal clear distance to the near edge of the bearing plates. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, the ratio of the length of bearing plates to the flat depth of the web and the location of the holes as defined by the distance of the hole from the edge of the bearing plate divided by the flat depth of web. In this study, design recommendations in the form of web crippling strength reduction factor equations are proposed, which are conservative when compared with the experimental and finite element results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.