6 resultados para Load Balancing in Wireless LAN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization is one of the key technologies in Wireless Sensor Networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints on cost and power consumption make it infeasible to equip each sensor node in the network with a Global Position System (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use mobile anchor nodes (MANs), which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. A considerable body of research has addressed the Mobile Anchor Node Assisted Localization (MANAL) problem. However to the best of our knowledge, no updated surveys on MAAL reflecting recent advances in the field have been presented in the past few years. This survey presents a review of the most successful MANAL algorithms, focusing on the achievements made in the past decade, and aims to become a starting point for researchers who are initiating their endeavors in MANAL research field. In addition, we seek to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful advances in this research field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a thorough experimental study on key generation principles, i.e. temporal variation, channel reciprocity, and spatial decorrelation, via a testbed constructed by using wireless open-access research platform (WARP). It is the first comprehensive study through (i) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber and an indoor office environment, which represents little, rich, and moderate multipath, respectively; (ii) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; (iii) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial for key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Massive multi-user multiple-input multiple-output (MU-MIMO) systems are cellular networks where the base stations (BSs) are equipped with hundreds of antennas, N, and communicate with tens of mobile stations (MSs), K, such that, N ≫ K ≫ 1. Contrary to most prior works, in this paper, we consider the uplink of a single-cell massive MIMO system operating in sparse channels with limited scattering. This case is of particular importance in most propagation scenarios, where the prevalent Rayleigh fading assumption becomes idealistic. We derive analytical approximations for the achievable rates of maximum-ratio combining (MRC) and zero-forcing (ZF) receivers. Furthermore, we study the asymptotic behavior of the achievable rates for both MRC and ZF receivers, when N and K go to infinity under the condition that N/K → c ≥ 1. Our results indicate that the achievable rate of MRC receivers reaches an asymptotic saturation limit, whereas the achievable rate of ZF receivers grows logarithmically with the number of MSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the energy efficiency (EE) of a point-to-point rank-1 Ricean fading multiple-input-multiple-output (MIMO) channel. In particular, a tight lower bound and an asymptotic approximation for the EE of the considered MIMO system are presented, under the assumption that the channel is unknown at the transmitter and perfectly known at the receiver. Moreover, the effects of different system parameters, namely, transmit power, spectral efficiency (SE), and number of transmit and receive antennas, on the EE are analytically investigated. An important observation is that, in the high signal-to-noise ratio regime and with the other system parameters fixed, the optimal transmit power that maximizes the EE increases as the Ricean-K factor increases. On the contrary, the optimal SE and the optimal number of transmit antennas decrease as K increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although epidemiological studies suggest that type 2 diabetes mellitus (T2DM) increases the risk of late-onset Alzheimer's disease (LOAD), the biological basis of this relationship is not well understood. The aim of this study was to examine the genetic comorbidity between the 2 disorders and to investigate whether genetic liability to T2DM, estimated by a genotype risk scores based on T2DM associated loci, is associated with increased risk of LOAD. This study was performed in 2 stages. In stage 1, we combined genotypes for the top 15 T2DM-associated polymorphisms drawn from approximately 3000 individuals (1349 cases and 1351 control subjects) with extracted and/or imputed data from 6 genome-wide studies (>10,000 individuals; 4507 cases, 2183 controls, 4989 population controls) to form a genotype risk score and examined if this was associated with increased LOAD risk in a combined meta-analysis. In stage 2, we investigated the association of LOAD with an expanded T2DM score made of 45 well-established variants drawn from the 6 genome-wide studies. Results were combined in a meta-analysis. Both stage 1 and stage 2 T2DM risk scores were not associated with LOAD risk (odds ratio = 0.988; 95% confidence interval, 0.972-1.004; p = 0.144 and odds ratio = 0.993; 95% confidence interval, 0.983-1.003; p = 0.149 per allele, respectively). Contrary to expectation, genotype risk scores based on established T2DM candidates were not associated with increased risk of LOAD. The observed epidemiological associations between T2DM and LOAD could therefore be a consequence of secondary disease processes, pleiotropic mechanisms, and/or common environmental risk factors. Future work should focus on well-characterized longitudinal cohorts with extensive phenotypic and genetic data relevant to both LOAD and T2DM.