5 resultados para Linearized thermistor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly introduced inverse class-E power amplifier (PA) was designed, simulated, fabricated, and characterized. The PA operated at 2.26 GHz and delivered 20.4-dBm output power with peak drain efficiency (DE) of 65% and power gain of 12 dB. Broadband performance was achieved across a 300-Mitz bandwidth with DE of better than 50% and 1-dB output-power flatness. The concept of enhanced injection predistortion with a capability to selectively suppress unwanted sub-frequency components and hence suitable for memory effects minimization is described coupled with a new technique that facilitates an accurate measurement of the phase of the third-order intermodulation (IM3) products. A robust iterative computational algorithm proposed in this paper dispenses with the need for manual tuning of amplitude and phase of the IM3 injected signals as commonly employed in the previous publications. The constructed inverse class-E PA was subjected to a nonconstant envelope 16 quadrature amplitude modulation signal and was linearized using combined lookup table (LUT) and enhanced injection technique from which superior properties from each technique can be simultaneously adopted. The proposed method resulted in 0.7% measured error vector magnitude (in rms) and 34-dB adjacent channel leakage power ratio improvement, which was 10 dB better than that achieved using the LUT predistortion alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many applications in applied statistics researchers reduce the complexity of a data set by combining a group of variables into a single measure using factor analysis or an index number. We argue that such compression loses information if the data actually has high dimensionality. We advocate the use of a non-parametric estimator, commonly used in physics (the Takens estimator), to estimate the correlation dimension of the data prior to compression. The advantage of this approach over traditional linear data compression approaches is that the data does not have to be linearized. Applying our ideas to the United Nations Human Development Index we find that the four variables that are used in its construction have dimension three and the index loses information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to accurate inferences. A transformation is also derived to reduce decision making in credal networks based on the maximality criterion to updating. The decision task is proved to have the same complexity of standard inference, being NPPP-complete for general credal nets and NP-complete for polytrees. Similar results are derived for the E-admissibility criterion. Numerical experiments confirm a good performance of the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to very accurate inferences. The approach can also be specialized to classification with credal networks based on the maximality criterion. A complexity analysis for both the problem and the algorithm is reported together with numerical experiments, which confirm the good performance of the method. While the inner approximation produced by the algorithm gives rise to a classifier which might return a subset of the optimal class set, preliminary empirical results suggest that the accuracy of the optimal class set is seldom affected by the approximate probabilities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion noise is becoming increasingly important as a major noise source in aeroengines and ground based gas turbines. This is partially because advances in design have reduced the other noise sources, and partially because next generation combustion modes burn more unsteadily, resulting in increased external noise from the combustion. This review reports recent progress made in understanding combustion noise by theoretical, numerical and experimental investigations. We first discuss the fundamentals of the sound emission from a combustion region. Then the noise of open turbulent flames is summarized. We subsequently address the effects of confinement on combustion noise. In this case not only is the sound generated by the combustion influenced by its transmission through the boundaries of the combustion chamber, there is also the possibility of a significant additional source, the so-called ‘indirect’ combustion noise. This involves hot spots (entropy fluctuations) or vorticity perturbations produced by temporal variations in combustion, which generate pressure waves (sound) as they accelerate through any restriction at the exit of the combustor. We describe the general characteristics of direct and indirect noise. To gain further insight into the physical phenomena of direct and indirect sound, we investigate a simple configuration consisting of a cylindrical or annular combustor with a low Mach number flow in which a flame zone burns unsteadily. Using a low Mach number approximation, algebraic exact solutions are developed so that the parameters controlling the generation of acoustic, entropic and vortical waves can be investigated. The validity of the low Mach number approximation is then verified by solving the linearized Euler equations numerically for a wide range of inlet Mach numbers, stagnation temperature ratios, frequency and mode number of heat release fluctuations. The effects of these parameters on the magnitude of the waves produced by the unsteady combustion are investigated. In particular the magnitude of the indirect and direct noise generated in a model combustor with a choked outlet is analyzed for a wide range of frequencies, inlet Mach numbers and stagnation temperature ratios. Finally, we summarize some of the unsolved questions that need to be the focus of future research