14 resultados para Linear bone measurement
Resumo:
For the purpose of a nonlocality test, we propose a general correlation observable of two parties by utilizing local d- outcome measurements with SU(d) transformations and classical communications. Generic symmetries of the SU(d) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser- Home-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, leads to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for d-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous- variable (CV) entangled state with d measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(greater than or equal to2) measurement outcomes when the observables are of SU(d) transformations.
Resumo:
We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.
Resumo:
Multi-walled carbon nanotube (MWCNT)/polymethyl methacrylate (PMMA) composites with loadings ranging from 0.1 to 1.0 wt.% were prepared for use as bone cement. Unfunctionalised, carboxyl and amine functionalised MWCNT were used. Thermal properties were characterised in accordance with the International Standard for acrylic cements, ISO 5833:2002. The rate of reaction exotherm generated and thermal necrosis index (TNI) values were calculated. Polymerisation kinetics were characterised using parallel plate rheology and the exotherm during polymerisation was reduced by ˜4–34%, as a consequence of the MWCNT thermal conductivity. The rate of reaction was significantly altered, such that the setting times of the cements were extended (˜3–24%). Consequently, significant decreases in TNI values (ranging from 3% to 99%) were recorded, which could reduce the exothermic temperatures experienced in vivo and therefore prevent the likelihood of polymerising PMMA cement causing thermally-induced bone tissue necrosis. Thermal data was supported by the rheological characterisation results. Onset of polymerisation for PMMA cement exhibited a strong linear increase as a function of MWCNT loading, however, polymer gelation was not affected to the same degree. It is proposed that the chemically functionalised MWCNT altered PMMA bone cement polymerisation kinetics, reducing the rate of polymerisation, and hence, the reaction exotherm.
Resumo:
Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-gamma-H2AX antibody. Quantification of the gamma-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region. A qualitative analysis of the foci detected in the Bragg peak and plateau region indicates significant differences highlighting the different severity of DNA lesions produced along the particle path. Irradiation of desalted plasmid DNA with 5 Gy antiprotons at the Bragg peak resulted in a significant portion of linear plasmid in the resultant solution.
Resumo:
Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.
Resumo:
Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.
Resumo:
Osseous metastases are a source of significant morbidity for patients with a variety of cancers. Radiotherapy is well established as an effective means of palliating symptoms associated with such metastases. The role of external beam radiotherapy is limited where sites of metastases are numerous and widespread. Low linear energy transfer (LET) radionuclides have been utilized to allow targeted delivery of radiotherapy to disparate sites of disease, with evidence of palliative benefit. More recently, the bone targeting, high LET radionuclide (223)Ra has been shown to not only have a palliative effect but also a survival prolonging effect in metastatic, castration-resistant prostate cancer with bone metastases. This article reviews the different radionuclide-based approaches for targeting bone metastases, with an emphasis on (223)Ra, and key elements of the underlying radiobiology of these that will impact their clinical effectiveness. Consideration is given to the remaining unknowns of both the basic radiobiological and applied clinical effects of (223)Ra as targets for future research.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950’s and 1960’s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and system cost. This paper investigates the development of a low cost portable SHM system using commercially available cameras and computer vision techniques. A series of laboratory tests have been carried out to test the accuracy of displacement measurements using contactless methods. The results from each of the tests have been validated with established measurement methods, such as linear variable differential transformers (LVDTs). A video image of each test was processed using two different digital image correlation programs. The results obtained from the digital image correlation methods provided an accurate comparison with the validation measurements. The calculated displacements agree within 4% of the verified measurements LVDT measurements in most cases confirming the suitability full camera based SHM systems