29 resultados para Liming of soils


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 µg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic carbon (DOC) in the soil porewater. The global flux of arsines emanating from soils was estimated and placed in the context of As atmospheric inputs, with arsines contributing from 0.9 to 2.6% of the global budget.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The soil carbon (C) stock of the Republic of Ireland is estimated to have been 2048 Mt in 1990 and 2021 Mt in 2000. Peat holds around 53% of the soil C stock, but on 17% of the land area. The C density of soils (t C ha-1) is mapped at 2 km*2 km resolution. The greatest soil C densities occur where deep raised bogs are the dominant soil; in these grid squares C density can reach 3000 t C ha-1. Most of the loss of soil C between 1990 and 2000-up to 23 Mt C (1% of 1990 soil C stock)-was through industrial peat extraction. The average annual change in soil C stocks from 1990 to 2000 due to land use change was estimated at around 0.02% of the 1990 stock. Considering uncertainties in the data used to calculate soil C stocks and changes, the small average annual 'loss' could be regarded as 'no change'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of