9 resultados para Lima-bean pod borer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and
have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of
2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine
and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics
to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients
of determination (R2) were found to be 0.89–0.99 depending on the mathematical algorithm used,
the data pre-processing applied and the sample type used. The corresponding values for the root mean
square error of calibration and prediction were found to be 0.081–0.276% and 0.134–0.368%, respectively,
again depending on the chemometric treatment applied to the data and sample type. In addition, adopting
a qualitative approach with the spectral data and applying PCA, it was possible to discriminate
between the four samples types and also, by generation of Cooman’s plots, possible to distinguish
between adulterated and non-adulterated samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of handheld near infrared (NIR) instrumentation, as a tool for rapid analysis, has the potential to be used widely in the animal feed sector. A comparison was made between handheld NIR and benchtop instruments in terms of proximate analysis of poultry feed using off-the-shelf calibration models and including statistical analysis. Additionally, melamine adulterated soya bean products were used to develop qualitative and quantitative calibration models from the NIRS spectral data with excellent calibration models and prediction statistics obtained. With regards to the quantitative approach, the coefficients of determination (R2) were found to be 0.94-0.99 with the corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.215 % and 0.095-0.288 % respectively. In addition, cross validation was used to further validate the models with the root mean square error of cross validation found to be 0.101-0.212 %. Furthermore, by adopting a qualitative approach with the spectral data and applying Principal Component Analysis, it was possible to discriminate between adulterated and pure samples.