11 resultados para Levure à fission
Resumo:
In the present study of Dugesia tigrina the development of the nervous system is followed and compared during regeneration after fission and after decapitation. Immunocytochemistry was used, with antisera raised against the biogenic amine, 5-hydroxytryptamine (5-HT) and the two neuropeptides, neuropeptide F (NPF), and FMRF amide. The results indicate that two processes are involved in the formation of the new cerebral ganglion. First, new processes sprouting from the original main longitudinal nerve cords bend transversely, indicating the position of the developing horseshoe-shaped anterior cerebral commissure. Then new nerve cells in front of the commissure differentiate from neoblasts and their growth cones fasciculate with the fibres from the old main longitudinal nerve cords. In the cerebral ganglion, 5-HT-IR cells appear before NPF-IR cells, in contrast to the pharynx where NPF-IR cells differentiate before the 5-HT-IR cells. In the peripheral nervous system, NPF-IR fibres and cells appear at a very early stage and dominate the whole regeneration process. A role for the PNS in early pattern formation is suggested.
Resumo:
Androgen and androgen receptors (AR) play critical roles in the proliferation of prostate cancer through transcriptional regulation of target genes. Here, we found that androgens upregulated the expression of dynamin-related protein 1 (Drp1), which is involved in the induction of mitochondrial fission, a common event in mitosis and apoptosis. Clinical tissue samples and various prostate cancer cell lines revealed a positive correlation between Drp1 and AR levels. Treatment of androgen-sensitive cells with an AR agonist, R1881, and antagonist, bicalutamide, showed that Drp1 is transcriptionally regulated by androgens, as confirmed by an AR ChIP-seq assay. Live imaging experiments using pAcGFP1-Mito stably transfected LNCaP (mito-green) cells revealed that androgen did not induce significant mitochondrial fission by itself, although Drp1 was upregulated. However, when treated with CGP37157 (CGP), an inhibitor of mitochondrial Ca²⁺ efflux, these cells exhibited mitochondrial fission, which was further enhanced by pretreatment with R1881, suggesting that androgen-induced Drp1 expression facilitated CGP-induced mitochondrial fission. This enhanced mitochondrial fission was correlated with increased apoptosis. Transfection with dominant-negative (DN-Drp1, K38A) rescued cells from increased apoptosis, confirming the role of androgen-induced Drp1 in the observed apoptosis with combination treatment. Furthermore, we found that CGP reduced the expression of Mfn1, a protein that promotes mitochondrial fusion, a process which opposes fission. We suggest that androgen-increased Drp1 enhanced mitochondrial fission leading to apoptosis. The present study shows a novel role for androgens in the regulation of mitochondrial morphology that could potentially be utilized in prostate cancer therapy.
Resumo:
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.
Resumo:
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.
Resumo:
A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.
Resumo:
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
Resumo:
The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.
Resumo:
Intersectin is a multidomain dynamin-binding protein implicated in numerous functions in the nervous system, including synapse formation and endocytosis. Here, we demonstrate that during neurotransmitter release in the central synapse, intersectin, like its binding partner dynamin, is redistributed from the synaptic vesicle pool to the periactive zone. Acute perturbation of the intersectin-dynamin interaction by microinjection of either intersectin antibodies or Src homology 3 (SH3) domains inhibited endocytosis at the fission step. Although the morphological effects induced by the different reagents were similar, antibody injections resulted in a dramatic increase in dynamin immunoreactivity around coated pits and at constricted necks, whereas synapses microinjected with the GST (glutathione S-transferase)-SH3C domain displayed reduced amounts of dynamin in the neck region. Our data suggest that intersectin controls the amount of dynamin released from the synaptic vesicle cluster to the periactive zone and that it may regulate fission of clathrin-coated intermediates.
Resumo:
The newly updated inventory of palaeoecological research in Latin America offers an important overview of sites available for multi-proxy and multi-site purposes. From the collected literature supporting this inventory, we collected all available age model metadata to create a chronological database of 5116 control points (e.g. 14C, tephra, fission track, OSL, 210Pb) from 1097 pollen records. Based on this literature review, we present a summary of chronological dating and reporting in the Neotropics. Difficulties and recommendations for chronology reporting are discussed. Furthermore, for 234 pollen records in northwest South America, a classification system for age uncertainties is implemented based on chronologies generated with updated calibration curves. With these outcomes age models are produced for those sites without an existing chronology, alternative age models are provided for researchers interested in comparing the effects of different calibration curves and age–depth modelling software, and the importance of uncertainty assessments of chronologies is highlighted. Sample resolution and temporal uncertainty of ages are discussed for different time windows, focusing on events relevant for research on centennial- to millennial-scale climate variability. All age models and developed R scripts are publicly available through figshare, including a manual to use the scripts.
Resumo:
As a leading facility in laser-driven nuclear physics, ELI-NP will develop innovative research in the fields of materials behavior in extreme environments and radiobiology, with applications in the development of accelerator components, new materials for next generation fusion and fission reactors, shielding solutions for equipment and human crew in long term space missions and new biomedical technologies. The specific properties of the laser-driven radiation produced with two lasers of 1 PW at a pulse repetition rate of 1 Hz each are an ultra-short time scale, a relatively broadband spectrum and the possibility to provide simultaneously several types of radiation. Complex, cosmic-like radiation will be produced in a ground-based laboratory allowing comprehensive investigations of their effects on materials and biological systems. The expected maximum energy and intensity of the radiation beams are 19 MeV with 10^9 photon/pulse for photon radiation, 2 GeV with 108 electron/pulse for electron beams, 60 MeV with 10^12 proton/pulse for proton and ion beams and 60 MeV with 107 neutron/pulse for a neutron source. Research efforts will be directed also towards measurements for radioprotection of the prompt and activated dose, as a function of laser and target characteristics and to the development and testing of various dosimetric methods and equipment.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.